Loading…

Unusual Structure, Fluxionality, and Reaction Mechanism of Carbonyl Hydrosilylation by Silyl Hydride Complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3]

The reactions of bis(borohydride) complexes [(RN)Mo(BH4)2(PMe3)2] (4: R=2,6‐Me2C6H3; 5: R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN)Mo(H)(SiR′3)(PMe3)3] (3: R=Ar, R′3=H2Ph; 8: R=Ar′, R′3=H2Ph; 9: R=Ar, R′3=(OEt)3; 10: R=Ar, R′3=HMePh). These compounds can also be co...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2013-06, Vol.19 (26), p.8573-8590
Main Authors: Khalimon, Andrey Y., Ignatov, Stanislav K., Okhapkin, Andrey I., Simionescu, Razvan, Kuzmina, Lyudmila G., Howard, Judith A. K., Nikonov, Georgii I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5106-f94ec3d2d0221bdaebbe5ac75b0a0832442230715453fddd5836032df8f217c43
cites cdi_FETCH-LOGICAL-c5106-f94ec3d2d0221bdaebbe5ac75b0a0832442230715453fddd5836032df8f217c43
container_end_page 8590
container_issue 26
container_start_page 8573
container_title Chemistry : a European journal
container_volume 19
creator Khalimon, Andrey Y.
Ignatov, Stanislav K.
Okhapkin, Andrey I.
Simionescu, Razvan
Kuzmina, Lyudmila G.
Howard, Judith A. K.
Nikonov, Georgii I.
description The reactions of bis(borohydride) complexes [(RN)Mo(BH4)2(PMe3)2] (4: R=2,6‐Me2C6H3; 5: R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN)Mo(H)(SiR′3)(PMe3)3] (3: R=Ar, R′3=H2Ph; 8: R=Ar′, R′3=H2Ph; 9: R=Ar, R′3=(OEt)3; 10: R=Ar, R′3=HMePh). These compounds can also be conveniently prepared by reacting [(RN)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non‐Bailar‐twist pathway. The silyl/silane exchange proceeds through an unusual MoVI intermediate, [(ArN)Mo(H)2(SiH2Ph)2(PMe3)2] (19). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans‐(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] (18). This latter species does not undergo the elimination of a SiO group (which corresponds to the conventional Ojima′s mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible β‐CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN)Mo(η2‐PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η1‐silane complex, as studied by DFT calculations. Rule breakers: Silyl hydride complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3] undergoes a silane‐assisted exchange of coordinated and free phosphines and catalyzes the hydrosilylation of carbonyl groups through an unexpected mechanism (see scheme), as studied by using DFT.
doi_str_mv 10.1002/chem.201300376
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778021481</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1778021481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5106-f94ec3d2d0221bdaebbe5ac75b0a0832442230715453fddd5836032df8f217c43</originalsourceid><addsrcrecordid>eNqFkdFu0zAYhSMEYt3glktkiZtUWspvO4nTyy2sDdI6JsrEBUKWEztqhpMUO9GaZ-AxeA9eiVfAXUaFuNmVf_v_zpF1jue9wjDDAORtsVH1jACmAJTFT7wJjggO3Bg99SYwD1kQR3R-5B1bewsA85jS594RoTHDQNjE-3HT9LYXGq070xddb9QpWuh-V7WN0FU3nCLRSPRRiaJzT2ilio1oKlujtkSpMHnbDBplgzStrfSgxT2VD2i9v90vKqlQ2tZbrXboi39mrn7__DVdtX429ddVRq43U_96peiUfn3hPSuFturlw3ni3SwuPqVZcPlh-T49uwyKCEMclPNQFVQSCYTgXAqV5yoSBYtyEJBQEoaEUGA4CiNaSimjhMZAiSyTkmBWhPTE80ffrWm_98p2vK5sobQWjWp7yzFjCRAcJvhx1AWZJDEw4tA3_6G3bW9ciiPlPhNTcNRspAqXmDWq5FtT1cIMHAPfN8r3jfJDo07w-sG2z2slD_jfCh0wH4G7SqvhETueZherf82DUVvZTu0OWmG-8ZhRFvHPV0uenSdL8m6x4Gv6B6yNuyU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1367453630</pqid></control><display><type>article</type><title>Unusual Structure, Fluxionality, and Reaction Mechanism of Carbonyl Hydrosilylation by Silyl Hydride Complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3]</title><source>Wiley</source><creator>Khalimon, Andrey Y. ; Ignatov, Stanislav K. ; Okhapkin, Andrey I. ; Simionescu, Razvan ; Kuzmina, Lyudmila G. ; Howard, Judith A. K. ; Nikonov, Georgii I.</creator><creatorcontrib>Khalimon, Andrey Y. ; Ignatov, Stanislav K. ; Okhapkin, Andrey I. ; Simionescu, Razvan ; Kuzmina, Lyudmila G. ; Howard, Judith A. K. ; Nikonov, Georgii I.</creatorcontrib><description>The reactions of bis(borohydride) complexes [(RN)Mo(BH4)2(PMe3)2] (4: R=2,6‐Me2C6H3; 5: R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN)Mo(H)(SiR′3)(PMe3)3] (3: R=Ar, R′3=H2Ph; 8: R=Ar′, R′3=H2Ph; 9: R=Ar, R′3=(OEt)3; 10: R=Ar, R′3=HMePh). These compounds can also be conveniently prepared by reacting [(RN)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non‐Bailar‐twist pathway. The silyl/silane exchange proceeds through an unusual MoVI intermediate, [(ArN)Mo(H)2(SiH2Ph)2(PMe3)2] (19). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans‐(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] (18). This latter species does not undergo the elimination of a SiO group (which corresponds to the conventional Ojima′s mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible β‐CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN)Mo(η2‐PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η1‐silane complex, as studied by DFT calculations. Rule breakers: Silyl hydride complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3] undergoes a silane‐assisted exchange of coordinated and free phosphines and catalyzes the hydrosilylation of carbonyl groups through an unexpected mechanism (see scheme), as studied by using DFT.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201300376</identifier><identifier>PMID: 23671027</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Acetone ; Chemistry ; Exchange ; fluxionality ; Hydrides ; Hydrosilylation ; Ligands ; Like kind exchange ; Mathematical analysis ; molybdenum ; Phosphines ; Silanes ; silicon</subject><ispartof>Chemistry : a European journal, 2013-06, Vol.19 (26), p.8573-8590</ispartof><rights>Copyright © 2013 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2013 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5106-f94ec3d2d0221bdaebbe5ac75b0a0832442230715453fddd5836032df8f217c43</citedby><cites>FETCH-LOGICAL-c5106-f94ec3d2d0221bdaebbe5ac75b0a0832442230715453fddd5836032df8f217c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23671027$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Khalimon, Andrey Y.</creatorcontrib><creatorcontrib>Ignatov, Stanislav K.</creatorcontrib><creatorcontrib>Okhapkin, Andrey I.</creatorcontrib><creatorcontrib>Simionescu, Razvan</creatorcontrib><creatorcontrib>Kuzmina, Lyudmila G.</creatorcontrib><creatorcontrib>Howard, Judith A. K.</creatorcontrib><creatorcontrib>Nikonov, Georgii I.</creatorcontrib><title>Unusual Structure, Fluxionality, and Reaction Mechanism of Carbonyl Hydrosilylation by Silyl Hydride Complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3]</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>The reactions of bis(borohydride) complexes [(RN)Mo(BH4)2(PMe3)2] (4: R=2,6‐Me2C6H3; 5: R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN)Mo(H)(SiR′3)(PMe3)3] (3: R=Ar, R′3=H2Ph; 8: R=Ar′, R′3=H2Ph; 9: R=Ar, R′3=(OEt)3; 10: R=Ar, R′3=HMePh). These compounds can also be conveniently prepared by reacting [(RN)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non‐Bailar‐twist pathway. The silyl/silane exchange proceeds through an unusual MoVI intermediate, [(ArN)Mo(H)2(SiH2Ph)2(PMe3)2] (19). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans‐(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] (18). This latter species does not undergo the elimination of a SiO group (which corresponds to the conventional Ojima′s mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible β‐CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN)Mo(η2‐PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η1‐silane complex, as studied by DFT calculations. Rule breakers: Silyl hydride complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3] undergoes a silane‐assisted exchange of coordinated and free phosphines and catalyzes the hydrosilylation of carbonyl groups through an unexpected mechanism (see scheme), as studied by using DFT.</description><subject>Acetone</subject><subject>Chemistry</subject><subject>Exchange</subject><subject>fluxionality</subject><subject>Hydrides</subject><subject>Hydrosilylation</subject><subject>Ligands</subject><subject>Like kind exchange</subject><subject>Mathematical analysis</subject><subject>molybdenum</subject><subject>Phosphines</subject><subject>Silanes</subject><subject>silicon</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkdFu0zAYhSMEYt3glktkiZtUWspvO4nTyy2sDdI6JsrEBUKWEztqhpMUO9GaZ-AxeA9eiVfAXUaFuNmVf_v_zpF1jue9wjDDAORtsVH1jACmAJTFT7wJjggO3Bg99SYwD1kQR3R-5B1bewsA85jS594RoTHDQNjE-3HT9LYXGq070xddb9QpWuh-V7WN0FU3nCLRSPRRiaJzT2ilio1oKlujtkSpMHnbDBplgzStrfSgxT2VD2i9v90vKqlQ2tZbrXboi39mrn7__DVdtX429ddVRq43U_96peiUfn3hPSuFturlw3ni3SwuPqVZcPlh-T49uwyKCEMclPNQFVQSCYTgXAqV5yoSBYtyEJBQEoaEUGA4CiNaSimjhMZAiSyTkmBWhPTE80ffrWm_98p2vK5sobQWjWp7yzFjCRAcJvhx1AWZJDEw4tA3_6G3bW9ciiPlPhNTcNRspAqXmDWq5FtT1cIMHAPfN8r3jfJDo07w-sG2z2slD_jfCh0wH4G7SqvhETueZherf82DUVvZTu0OWmG-8ZhRFvHPV0uenSdL8m6x4Gv6B6yNuyU</recordid><startdate>20130624</startdate><enddate>20130624</enddate><creator>Khalimon, Andrey Y.</creator><creator>Ignatov, Stanislav K.</creator><creator>Okhapkin, Andrey I.</creator><creator>Simionescu, Razvan</creator><creator>Kuzmina, Lyudmila G.</creator><creator>Howard, Judith A. K.</creator><creator>Nikonov, Georgii I.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20130624</creationdate><title>Unusual Structure, Fluxionality, and Reaction Mechanism of Carbonyl Hydrosilylation by Silyl Hydride Complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3]</title><author>Khalimon, Andrey Y. ; Ignatov, Stanislav K. ; Okhapkin, Andrey I. ; Simionescu, Razvan ; Kuzmina, Lyudmila G. ; Howard, Judith A. K. ; Nikonov, Georgii I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5106-f94ec3d2d0221bdaebbe5ac75b0a0832442230715453fddd5836032df8f217c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acetone</topic><topic>Chemistry</topic><topic>Exchange</topic><topic>fluxionality</topic><topic>Hydrides</topic><topic>Hydrosilylation</topic><topic>Ligands</topic><topic>Like kind exchange</topic><topic>Mathematical analysis</topic><topic>molybdenum</topic><topic>Phosphines</topic><topic>Silanes</topic><topic>silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khalimon, Andrey Y.</creatorcontrib><creatorcontrib>Ignatov, Stanislav K.</creatorcontrib><creatorcontrib>Okhapkin, Andrey I.</creatorcontrib><creatorcontrib>Simionescu, Razvan</creatorcontrib><creatorcontrib>Kuzmina, Lyudmila G.</creatorcontrib><creatorcontrib>Howard, Judith A. K.</creatorcontrib><creatorcontrib>Nikonov, Georgii I.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khalimon, Andrey Y.</au><au>Ignatov, Stanislav K.</au><au>Okhapkin, Andrey I.</au><au>Simionescu, Razvan</au><au>Kuzmina, Lyudmila G.</au><au>Howard, Judith A. K.</au><au>Nikonov, Georgii I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unusual Structure, Fluxionality, and Reaction Mechanism of Carbonyl Hydrosilylation by Silyl Hydride Complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3]</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2013-06-24</date><risdate>2013</risdate><volume>19</volume><issue>26</issue><spage>8573</spage><epage>8590</epage><pages>8573-8590</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>The reactions of bis(borohydride) complexes [(RN)Mo(BH4)2(PMe3)2] (4: R=2,6‐Me2C6H3; 5: R=2,6‐iPr2C6H3) with hydrosilanes afford new silyl hydride derivatives [(RN)Mo(H)(SiR′3)(PMe3)3] (3: R=Ar, R′3=H2Ph; 8: R=Ar′, R′3=H2Ph; 9: R=Ar, R′3=(OEt)3; 10: R=Ar, R′3=HMePh). These compounds can also be conveniently prepared by reacting [(RN)Mo(H)(Cl)(PMe3)3] with one equivalent of LiBH4 in the presence of a silane. Complex 3 undergoes intramolecular and intermolecular phosphine exchange, as well as exchange between the silyl ligand and the free silane. Kinetic and DFT studies show that the intermolecular phosphine exchange occurs through the predissociation of a PMe3 group, which, surprisingly, is facilitated by the silane. The intramolecular exchange proceeds through a new non‐Bailar‐twist pathway. The silyl/silane exchange proceeds through an unusual MoVI intermediate, [(ArN)Mo(H)2(SiH2Ph)2(PMe3)2] (19). Complex 3 was found to be the catalyst of a variety of hydrosilylation reactions of carbonyl compounds (aldehydes and ketones) and nitriles, as well as of silane alcoholysis. Stoichiometric mechanistic studies of the hydrosilylation of acetone, supported by DFT calculations, suggest the operation of an unexpected mechanism, in that the silyl ligand of compound 3 plays an unusual role as a spectator ligand. The addition of acetone to compound 3 leads to the formation of [trans‐(ArN)Mo(OiPr)(SiH2Ph)(PMe3)2] (18). This latter species does not undergo the elimination of a SiO group (which corresponds to the conventional Ojima′s mechanism of hydrosilylation). Rather, complex 18 undergoes unusual reversible β‐CH activation of the isopropoxy ligand. In the hydrosilylation of benzaldehyde, the reaction proceeds through the formation of a new intermediate bis(benzaldehyde) adduct, [(ArN)Mo(η2‐PhC(O)H)2(PMe3)], which reacts further with hydrosilane through a η1‐silane complex, as studied by DFT calculations. Rule breakers: Silyl hydride complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3] undergoes a silane‐assisted exchange of coordinated and free phosphines and catalyzes the hydrosilylation of carbonyl groups through an unexpected mechanism (see scheme), as studied by using DFT.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>23671027</pmid><doi>10.1002/chem.201300376</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2013-06, Vol.19 (26), p.8573-8590
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1778021481
source Wiley
subjects Acetone
Chemistry
Exchange
fluxionality
Hydrides
Hydrosilylation
Ligands
Like kind exchange
Mathematical analysis
molybdenum
Phosphines
Silanes
silicon
title Unusual Structure, Fluxionality, and Reaction Mechanism of Carbonyl Hydrosilylation by Silyl Hydride Complex [(ArN)Mo(H)(SiH2Ph)(PMe3)3]
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A25%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unusual%20Structure,%20Fluxionality,%20and%20Reaction%20Mechanism%20of%20Carbonyl%20Hydrosilylation%20by%20Silyl%20Hydride%20Complex%20%5B(ArN%EF%A3%BE)Mo(H)(SiH2Ph)(PMe3)3%5D&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Khalimon,%20Andrey%20Y.&rft.date=2013-06-24&rft.volume=19&rft.issue=26&rft.spage=8573&rft.epage=8590&rft.pages=8573-8590&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201300376&rft_dat=%3Cproquest_cross%3E1778021481%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5106-f94ec3d2d0221bdaebbe5ac75b0a0832442230715453fddd5836032df8f217c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1367453630&rft_id=info:pmid/23671027&rfr_iscdi=true