Loading…
Deformation gradient tensor decomposition for representing matrix cracks in fiber-reinforced materials
A new method is presented for the representation of matrix cracks in continuum damage mechanics (CDM) models for fiber-reinforced materials. The method is based on the additive decomposition of the deformation gradient tensor into ‘crack’ and ‘bulk material’ components, analogous to the additive str...
Saved in:
Published in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2015-09, Vol.76, p.334-341 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new method is presented for the representation of matrix cracks in continuum damage mechanics (CDM) models for fiber-reinforced materials. The method is based on the additive decomposition of the deformation gradient tensor into ‘crack’ and ‘bulk material’ components, analogous to the additive strain decomposition of the smeared-crack approach. The potential improvements to the accuracy of CDM models that utilize the presented method are demonstrated for a single element subjected to simple shear deformation and for a unidirectional open-hole tension specimen. The presented method avoids load transfer across matrix cracks and eliminates the prediction of spurious secondary failure modes that occurs when conventional strain-based CDM models are used in geometrically nonlinear finite element analyses involving large shear deformations. |
---|---|
ISSN: | 1359-835X 1878-5840 |
DOI: | 10.1016/j.compositesa.2015.06.014 |