Loading…
Spray Drying of Lactobacillus plantarum WCFS1 Guided by Predictive Modeling
Shelf life of probiotic microorganisms can be retained by drying. Spray drying is an economically interesting alternative to freeze drying with that respect. However, the viability can decrease due to the drying process and testing it is laborious and expensive. This research shows that the viabilit...
Saved in:
Published in: | Drying technology 2015-11, Vol.33 (15-16), p.1789-1797 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Shelf life of probiotic microorganisms can be retained by drying. Spray drying is an economically interesting alternative to freeze drying with that respect. However, the viability can decrease due to the drying process and testing it is laborious and expensive. This research shows that the viability of Lactobacillus plantarum WCFS1 during pilot scale drying can be predicted with kinetics gathered at a single droplet level. Using this approach, it could be demonstrated that the viability of L. plantarum WCFS1 during spray drying is mainly determined by the combination of temperature and moisture content during the first 0.5 seconds after atomization. The combination of a high moisture content and a high temperature appeared most detrimental to the residual viability. Moreover, it was found to be important to take into account the particle size distribution during atomization when predicting viability, since this has a large effect on the moisture content during this first 0.5 seconds. Finally, it was observed that shelf life during storage was mainly determined by the moisture content of the powder. A lower moisture content resulted in a higher viability. Above a moisture content of 6%, shelf life stability rapidly decreased in the applied maltodextrin (DE = 16) matrix. |
---|---|
ISSN: | 1532-2300 0737-3937 1532-2300 |
DOI: | 10.1080/07373937.2015.1026975 |