Loading…

Deriving and Validating User Experience Model for DASH Video Streaming

Ever since video compression and streaming techniques have been introduced, measurement of perceived video quality has been a non-trivial task. Dynamic adaptive streaming (DASH) over hypertext transfer protocol, is a new worldwide standard for adaptive streaming of video. DASH has introduced an addi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on broadcasting 2015-12, Vol.61 (4), p.651-665
Main Authors: Yao Liu, Dey, Sujit, Ulupinar, Fatih, Luby, Michael, Yinian Mao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ever since video compression and streaming techniques have been introduced, measurement of perceived video quality has been a non-trivial task. Dynamic adaptive streaming (DASH) over hypertext transfer protocol, is a new worldwide standard for adaptive streaming of video. DASH has introduced an additional level of complexity for measuring perceived video quality, as it varies the video bit rate and quality. In this paper, we study the perceived video quality using DASH. We investigate three factors which impact user perceived video quality: 1) initial delay; 2) stall (frame freezing); and 3) bit rate (frame quality) fluctuation. For each factor, we explore multiple dimensions that can have different effects on perceived quality. For example, in the case of the factor stall, while most previous research have studied how stall duration correlates with user experience, we also consider how the stalls are distributed together with the amount of motion in the video content, since we believe they may also impact user perceived quality. We conduct extensive subjective tests in which a group of subjects provide subjective evaluation while watching DASH videos with one or more artifacts occurring. Based on the subjective tests, we first derive impairment functions which can quantitatively measure the impairment of each factor, and then combine these impairment functions together to formulate an overall user experience model for any DASH video. We validate with high accuracy the user experience model, and demonstrate its applicability to long videos.
ISSN:0018-9316
1557-9611
DOI:10.1109/TBC.2015.2460611