Loading…

Recognizing emotions in dialogues with acoustic and lexical features

Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalis...

Full description

Saved in:
Bibliographic Details
Main Authors: Leimin Tian, Moore, Johanna D., Lai, Catherine
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 742
container_issue
container_start_page 737
container_title
container_volume
creator Leimin Tian
Moore, Johanna D.
Lai, Catherine
description Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalisations (DIS-NVs), and show that they are highly predictive for recognizing emotions in spontaneous dialogues. We also propose the hierarchical fusion strategy as an alternative to current feature-level and decision-level fusion. This fusion strategy combines features from different modalities at different layers in a hierarchical structure. It is expected to overcome limitations of feature-level and decision-level fusion by including knowledge on modality differences, while preserving information of each modality.
doi_str_mv 10.1109/ACII.2015.7344651
format conference_proceeding
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778046885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7344651</ieee_id><sourcerecordid>1778046885</sourcerecordid><originalsourceid>FETCH-LOGICAL-i251t-7378e31dd546aafe3633bef66144bc2cda9bf914cc4f0d66358e6e01ea494e93</originalsourceid><addsrcrecordid>eNotkE1LxDAYhKMguK77A8RLjl5a8zYfbY5LdbWwIMjeS5q-rZF-rE2KH7_ewu5c5jIMzwwhd8BiAKYft3lRxAkDGadcCCXhgtyASPUiyfUlWSUgVZQBwDXZeP_JGAMtWZbJFXl6Rzu2g_tzQ0uxH4MbB0_dQGtnurGd0dNvFz6osePsg7PUDDXt8MdZ09EGTZgn9LfkqjGdx83Z1-Swez7kr9H-7aXIt_vIJRJClPI0Qw51LYUypkGuOK-wUQqEqGxia6OrRoOwVjSsVorLDBUyQCO0QM3X5OFUe5zGr4UslL3zFrvODLjQlZCmGRNq2bVE709Rh4jlcXK9mX7L8z38H3D2WXE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1778046885</pqid></control><display><type>conference_proceeding</type><title>Recognizing emotions in dialogues with acoustic and lexical features</title><source>IEEE Xplore All Conference Series</source><creator>Leimin Tian ; Moore, Johanna D. ; Lai, Catherine</creator><creatorcontrib>Leimin Tian ; Moore, Johanna D. ; Lai, Catherine</creatorcontrib><description>Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalisations (DIS-NVs), and show that they are highly predictive for recognizing emotions in spontaneous dialogues. We also propose the hierarchical fusion strategy as an alternative to current feature-level and decision-level fusion. This fusion strategy combines features from different modalities at different layers in a hierarchical structure. It is expected to overcome limitations of feature-level and decision-level fusion by including knowledge on modality differences, while preserving information of each modality.</description><identifier>EISSN: 2156-8111</identifier><identifier>EISBN: 1479999539</identifier><identifier>EISBN: 9781479999538</identifier><identifier>DOI: 10.1109/ACII.2015.7344651</identifier><language>eng</language><publisher>IEEE</publisher><subject>Acoustics ; Computation ; Conferences ; Context modeling ; dialogue system ; disfluency ; Emotion recognition ; Emotions ; Feature extraction ; Feature recognition ; Predictive models ; Recognition ; State of the art ; Strategy ; Visualization</subject><ispartof>2015 International Conference on Affective Computing and Intelligent Interaction (ACII), 2015, p.737-742</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7344651$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7344651$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Leimin Tian</creatorcontrib><creatorcontrib>Moore, Johanna D.</creatorcontrib><creatorcontrib>Lai, Catherine</creatorcontrib><title>Recognizing emotions in dialogues with acoustic and lexical features</title><title>2015 International Conference on Affective Computing and Intelligent Interaction (ACII)</title><addtitle>ACII</addtitle><description>Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalisations (DIS-NVs), and show that they are highly predictive for recognizing emotions in spontaneous dialogues. We also propose the hierarchical fusion strategy as an alternative to current feature-level and decision-level fusion. This fusion strategy combines features from different modalities at different layers in a hierarchical structure. It is expected to overcome limitations of feature-level and decision-level fusion by including knowledge on modality differences, while preserving information of each modality.</description><subject>Acoustics</subject><subject>Computation</subject><subject>Conferences</subject><subject>Context modeling</subject><subject>dialogue system</subject><subject>disfluency</subject><subject>Emotion recognition</subject><subject>Emotions</subject><subject>Feature extraction</subject><subject>Feature recognition</subject><subject>Predictive models</subject><subject>Recognition</subject><subject>State of the art</subject><subject>Strategy</subject><subject>Visualization</subject><issn>2156-8111</issn><isbn>1479999539</isbn><isbn>9781479999538</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2015</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkE1LxDAYhKMguK77A8RLjl5a8zYfbY5LdbWwIMjeS5q-rZF-rE2KH7_ewu5c5jIMzwwhd8BiAKYft3lRxAkDGadcCCXhgtyASPUiyfUlWSUgVZQBwDXZeP_JGAMtWZbJFXl6Rzu2g_tzQ0uxH4MbB0_dQGtnurGd0dNvFz6osePsg7PUDDXt8MdZ09EGTZgn9LfkqjGdx83Z1-Swez7kr9H-7aXIt_vIJRJClPI0Qw51LYUypkGuOK-wUQqEqGxia6OrRoOwVjSsVorLDBUyQCO0QM3X5OFUe5zGr4UslL3zFrvODLjQlZCmGRNq2bVE709Rh4jlcXK9mX7L8z38H3D2WXE</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Leimin Tian</creator><creator>Moore, Johanna D.</creator><creator>Lai, Catherine</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150901</creationdate><title>Recognizing emotions in dialogues with acoustic and lexical features</title><author>Leimin Tian ; Moore, Johanna D. ; Lai, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i251t-7378e31dd546aafe3633bef66144bc2cda9bf914cc4f0d66358e6e01ea494e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustics</topic><topic>Computation</topic><topic>Conferences</topic><topic>Context modeling</topic><topic>dialogue system</topic><topic>disfluency</topic><topic>Emotion recognition</topic><topic>Emotions</topic><topic>Feature extraction</topic><topic>Feature recognition</topic><topic>Predictive models</topic><topic>Recognition</topic><topic>State of the art</topic><topic>Strategy</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Leimin Tian</creatorcontrib><creatorcontrib>Moore, Johanna D.</creatorcontrib><creatorcontrib>Lai, Catherine</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Leimin Tian</au><au>Moore, Johanna D.</au><au>Lai, Catherine</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Recognizing emotions in dialogues with acoustic and lexical features</atitle><btitle>2015 International Conference on Affective Computing and Intelligent Interaction (ACII)</btitle><stitle>ACII</stitle><date>2015-09-01</date><risdate>2015</risdate><spage>737</spage><epage>742</epage><pages>737-742</pages><eissn>2156-8111</eissn><eisbn>1479999539</eisbn><eisbn>9781479999538</eisbn><abstract>Automatic emotion recognition has long been a focus of Affective Computing. We aim at improving the performance of state-of-the-art emotion recognition in dialogues using novel knowledge-inspired features and modality fusion strategies. We propose features based on disfluencies and nonverbal vocalisations (DIS-NVs), and show that they are highly predictive for recognizing emotions in spontaneous dialogues. We also propose the hierarchical fusion strategy as an alternative to current feature-level and decision-level fusion. This fusion strategy combines features from different modalities at different layers in a hierarchical structure. It is expected to overcome limitations of feature-level and decision-level fusion by including knowledge on modality differences, while preserving information of each modality.</abstract><pub>IEEE</pub><doi>10.1109/ACII.2015.7344651</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2156-8111
ispartof 2015 International Conference on Affective Computing and Intelligent Interaction (ACII), 2015, p.737-742
issn 2156-8111
language eng
recordid cdi_proquest_miscellaneous_1778046885
source IEEE Xplore All Conference Series
subjects Acoustics
Computation
Conferences
Context modeling
dialogue system
disfluency
Emotion recognition
Emotions
Feature extraction
Feature recognition
Predictive models
Recognition
State of the art
Strategy
Visualization
title Recognizing emotions in dialogues with acoustic and lexical features
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Recognizing%20emotions%20in%20dialogues%20with%20acoustic%20and%20lexical%20features&rft.btitle=2015%20International%20Conference%20on%20Affective%20Computing%20and%20Intelligent%20Interaction%20(ACII)&rft.au=Leimin%20Tian&rft.date=2015-09-01&rft.spage=737&rft.epage=742&rft.pages=737-742&rft.eissn=2156-8111&rft_id=info:doi/10.1109/ACII.2015.7344651&rft.eisbn=1479999539&rft.eisbn_list=9781479999538&rft_dat=%3Cproquest_CHZPO%3E1778046885%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i251t-7378e31dd546aafe3633bef66144bc2cda9bf914cc4f0d66358e6e01ea494e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778046885&rft_id=info:pmid/&rft_ieee_id=7344651&rfr_iscdi=true