Loading…

Application of higher-order spectra for automated grading of diabetic maculopathy

Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema a...

Full description

Saved in:
Bibliographic Details
Published in:Medical & biological engineering & computing 2015-12, Vol.53 (12), p.1319-1331
Main Authors: Mookiah, Muthu Rama Krishnan, Acharya, U. Rajendra, Chandran, Vinod, Martis, Roshan Joy, Tan, Jen Hong, Koh, Joel E. W., Chua, Chua Kuang, Tong, Louis, Laude, Augustinus
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613
cites cdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613
container_end_page 1331
container_issue 12
container_start_page 1319
container_title Medical & biological engineering & computing
container_volume 53
creator Mookiah, Muthu Rama Krishnan
Acharya, U. Rajendra
Chandran, Vinod
Martis, Roshan Joy
Tan, Jen Hong
Koh, Joel E. W.
Chua, Chua Kuang
Tong, Louis
Laude, Augustinus
description Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.
doi_str_mv 10.1007/s11517-015-1278-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778056506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738482220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVJSLabPEAvxZBLLm41Y8mSjyEkbWGhFJKzGEvaXS-25Ur2IW9fm92EUijkNIf55p8ZPsY-Af8CnKuvCUCCyjnIHFDpXH1gK1ACci6EOGMrDoLPXdCX7GNKB84RJIoLdolSV0KUYsV-3Q1D21gam9BnYZvtm93exzxE52OWBm_HSNk2xIymMXQ0epftIrmm3y20a6j2Y2OzjuzUhoHG_csVO99Sm_z1qa7Z8-PD0_33fPPz24_7u01upYQxJ41WV7VCKjQoXuiydljXrnYeFQKVFpBK7awrsFLWkicsRGl5URVKlVCs2e0xd4jh9-TTaLomWd-21PswJQNKaS5Lyct3oBIQK8nVO9BCC42IfEZv_kEPYYr9_PNCKRBY4bIbjpSNIaXot2aITUfxxQA3i0VztGhmi2axaJYjPp-Sp7rz7m3iVdsM4BFIc6vf-fjX6v-m_gHuJKWp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1737142926</pqid></control><display><type>article</type><title>Application of higher-order spectra for automated grading of diabetic maculopathy</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Mookiah, Muthu Rama Krishnan ; Acharya, U. Rajendra ; Chandran, Vinod ; Martis, Roshan Joy ; Tan, Jen Hong ; Koh, Joel E. W. ; Chua, Chua Kuang ; Tong, Louis ; Laude, Augustinus</creator><creatorcontrib>Mookiah, Muthu Rama Krishnan ; Acharya, U. Rajendra ; Chandran, Vinod ; Martis, Roshan Joy ; Tan, Jen Hong ; Koh, Joel E. W. ; Chua, Chua Kuang ; Tong, Louis ; Laude, Augustinus</creatorcontrib><description>Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-015-1278-7</identifier><identifier>PMID: 25894464</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Analysis ; Automation ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Applications ; Computer engineering ; Datasets ; Diabetes ; Diabetic retinopathy ; Diabetic Retinopathy - classification ; Diabetic Retinopathy - diagnosis ; Diagnostic Techniques, Ophthalmological ; Discriminant analysis ; Edema ; Grading ; Human Physiology ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Information systems ; Macular Edema - classification ; Macular Edema - diagnosis ; Medical diagnosis ; Medical services ; Middle Aged ; Morphology ; Original Article ; Radiology ; Redundancy ; Regression analysis ; ROC Curve ; Spectra ; Studies ; Support vector machines ; Visual acuity ; Young Adult</subject><ispartof>Medical &amp; biological engineering &amp; computing, 2015-12, Vol.53 (12), p.1319-1331</ispartof><rights>International Federation for Medical and Biological Engineering 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</citedby><cites>FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1737142926/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1737142926?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25894464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mookiah, Muthu Rama Krishnan</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Chandran, Vinod</creatorcontrib><creatorcontrib>Martis, Roshan Joy</creatorcontrib><creatorcontrib>Tan, Jen Hong</creatorcontrib><creatorcontrib>Koh, Joel E. W.</creatorcontrib><creatorcontrib>Chua, Chua Kuang</creatorcontrib><creatorcontrib>Tong, Louis</creatorcontrib><creatorcontrib>Laude, Augustinus</creatorcontrib><title>Application of higher-order spectra for automated grading of diabetic maculopathy</title><title>Medical &amp; biological engineering &amp; computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.</description><subject>Adult</subject><subject>Analysis</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Applications</subject><subject>Computer engineering</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - classification</subject><subject>Diabetic Retinopathy - diagnosis</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Discriminant analysis</subject><subject>Edema</subject><subject>Grading</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Information systems</subject><subject>Macular Edema - classification</subject><subject>Macular Edema - diagnosis</subject><subject>Medical diagnosis</subject><subject>Medical services</subject><subject>Middle Aged</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Redundancy</subject><subject>Regression analysis</subject><subject>ROC Curve</subject><subject>Spectra</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Visual acuity</subject><subject>Young Adult</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkcFq3DAQhkVJSLabPEAvxZBLLm41Y8mSjyEkbWGhFJKzGEvaXS-25Ur2IW9fm92EUijkNIf55p8ZPsY-Af8CnKuvCUCCyjnIHFDpXH1gK1ACci6EOGMrDoLPXdCX7GNKB84RJIoLdolSV0KUYsV-3Q1D21gam9BnYZvtm93exzxE52OWBm_HSNk2xIymMXQ0epftIrmm3y20a6j2Y2OzjuzUhoHG_csVO99Sm_z1qa7Z8-PD0_33fPPz24_7u01upYQxJ41WV7VCKjQoXuiydljXrnYeFQKVFpBK7awrsFLWkicsRGl5URVKlVCs2e0xd4jh9-TTaLomWd-21PswJQNKaS5Lyct3oBIQK8nVO9BCC42IfEZv_kEPYYr9_PNCKRBY4bIbjpSNIaXot2aITUfxxQA3i0VztGhmi2axaJYjPp-Sp7rz7m3iVdsM4BFIc6vf-fjX6v-m_gHuJKWp</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Mookiah, Muthu Rama Krishnan</creator><creator>Acharya, U. Rajendra</creator><creator>Chandran, Vinod</creator><creator>Martis, Roshan Joy</creator><creator>Tan, Jen Hong</creator><creator>Koh, Joel E. W.</creator><creator>Chua, Chua Kuang</creator><creator>Tong, Louis</creator><creator>Laude, Augustinus</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20151201</creationdate><title>Application of higher-order spectra for automated grading of diabetic maculopathy</title><author>Mookiah, Muthu Rama Krishnan ; Acharya, U. Rajendra ; Chandran, Vinod ; Martis, Roshan Joy ; Tan, Jen Hong ; Koh, Joel E. W. ; Chua, Chua Kuang ; Tong, Louis ; Laude, Augustinus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Analysis</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Applications</topic><topic>Computer engineering</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - classification</topic><topic>Diabetic Retinopathy - diagnosis</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Discriminant analysis</topic><topic>Edema</topic><topic>Grading</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Information systems</topic><topic>Macular Edema - classification</topic><topic>Macular Edema - diagnosis</topic><topic>Medical diagnosis</topic><topic>Medical services</topic><topic>Middle Aged</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Redundancy</topic><topic>Regression analysis</topic><topic>ROC Curve</topic><topic>Spectra</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Visual acuity</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mookiah, Muthu Rama Krishnan</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Chandran, Vinod</creatorcontrib><creatorcontrib>Martis, Roshan Joy</creatorcontrib><creatorcontrib>Tan, Jen Hong</creatorcontrib><creatorcontrib>Koh, Joel E. W.</creatorcontrib><creatorcontrib>Chua, Chua Kuang</creatorcontrib><creatorcontrib>Tong, Louis</creatorcontrib><creatorcontrib>Laude, Augustinus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Medical &amp; biological engineering &amp; computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mookiah, Muthu Rama Krishnan</au><au>Acharya, U. Rajendra</au><au>Chandran, Vinod</au><au>Martis, Roshan Joy</au><au>Tan, Jen Hong</au><au>Koh, Joel E. W.</au><au>Chua, Chua Kuang</au><au>Tong, Louis</au><au>Laude, Augustinus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of higher-order spectra for automated grading of diabetic maculopathy</atitle><jtitle>Medical &amp; biological engineering &amp; computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>53</volume><issue>12</issue><spage>1319</spage><epage>1331</epage><pages>1319-1331</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25894464</pmid><doi>10.1007/s11517-015-1278-7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0140-0118
ispartof Medical & biological engineering & computing, 2015-12, Vol.53 (12), p.1319-1331
issn 0140-0118
1741-0444
language eng
recordid cdi_proquest_miscellaneous_1778056506
source Business Source Ultimate; ABI/INFORM Global; Springer Nature
subjects Adult
Analysis
Automation
Biomedical and Life Sciences
Biomedical engineering
Biomedical Engineering and Bioengineering
Biomedicine
Computer Applications
Computer engineering
Datasets
Diabetes
Diabetic retinopathy
Diabetic Retinopathy - classification
Diabetic Retinopathy - diagnosis
Diagnostic Techniques, Ophthalmological
Discriminant analysis
Edema
Grading
Human Physiology
Humans
Image Interpretation, Computer-Assisted - methods
Imaging
Information systems
Macular Edema - classification
Macular Edema - diagnosis
Medical diagnosis
Medical services
Middle Aged
Morphology
Original Article
Radiology
Redundancy
Regression analysis
ROC Curve
Spectra
Studies
Support vector machines
Visual acuity
Young Adult
title Application of higher-order spectra for automated grading of diabetic maculopathy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20higher-order%20spectra%20for%20automated%20grading%20of%20diabetic%20maculopathy&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Mookiah,%20Muthu%20Rama%20Krishnan&rft.date=2015-12-01&rft.volume=53&rft.issue=12&rft.spage=1319&rft.epage=1331&rft.pages=1319-1331&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-015-1278-7&rft_dat=%3Cproquest_cross%3E1738482220%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1737142926&rft_id=info:pmid/25894464&rfr_iscdi=true