Loading…
Application of higher-order spectra for automated grading of diabetic maculopathy
Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema a...
Saved in:
Published in: | Medical & biological engineering & computing 2015-12, Vol.53 (12), p.1319-1331 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613 |
---|---|
cites | cdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613 |
container_end_page | 1331 |
container_issue | 12 |
container_start_page | 1319 |
container_title | Medical & biological engineering & computing |
container_volume | 53 |
creator | Mookiah, Muthu Rama Krishnan Acharya, U. Rajendra Chandran, Vinod Martis, Roshan Joy Tan, Jen Hong Koh, Joel E. W. Chua, Chua Kuang Tong, Louis Laude, Augustinus |
description | Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively. |
doi_str_mv | 10.1007/s11517-015-1278-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778056506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1738482220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</originalsourceid><addsrcrecordid>eNqNkcFq3DAQhkVJSLabPEAvxZBLLm41Y8mSjyEkbWGhFJKzGEvaXS-25Ur2IW9fm92EUijkNIf55p8ZPsY-Af8CnKuvCUCCyjnIHFDpXH1gK1ACci6EOGMrDoLPXdCX7GNKB84RJIoLdolSV0KUYsV-3Q1D21gam9BnYZvtm93exzxE52OWBm_HSNk2xIymMXQ0epftIrmm3y20a6j2Y2OzjuzUhoHG_csVO99Sm_z1qa7Z8-PD0_33fPPz24_7u01upYQxJ41WV7VCKjQoXuiydljXrnYeFQKVFpBK7awrsFLWkicsRGl5URVKlVCs2e0xd4jh9-TTaLomWd-21PswJQNKaS5Lyct3oBIQK8nVO9BCC42IfEZv_kEPYYr9_PNCKRBY4bIbjpSNIaXot2aITUfxxQA3i0VztGhmi2axaJYjPp-Sp7rz7m3iVdsM4BFIc6vf-fjX6v-m_gHuJKWp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1737142926</pqid></control><display><type>article</type><title>Application of higher-order spectra for automated grading of diabetic maculopathy</title><source>Business Source Ultimate</source><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Mookiah, Muthu Rama Krishnan ; Acharya, U. Rajendra ; Chandran, Vinod ; Martis, Roshan Joy ; Tan, Jen Hong ; Koh, Joel E. W. ; Chua, Chua Kuang ; Tong, Louis ; Laude, Augustinus</creator><creatorcontrib>Mookiah, Muthu Rama Krishnan ; Acharya, U. Rajendra ; Chandran, Vinod ; Martis, Roshan Joy ; Tan, Jen Hong ; Koh, Joel E. W. ; Chua, Chua Kuang ; Tong, Louis ; Laude, Augustinus</creatorcontrib><description>Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.</description><identifier>ISSN: 0140-0118</identifier><identifier>EISSN: 1741-0444</identifier><identifier>DOI: 10.1007/s11517-015-1278-7</identifier><identifier>PMID: 25894464</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Adult ; Analysis ; Automation ; Biomedical and Life Sciences ; Biomedical engineering ; Biomedical Engineering and Bioengineering ; Biomedicine ; Computer Applications ; Computer engineering ; Datasets ; Diabetes ; Diabetic retinopathy ; Diabetic Retinopathy - classification ; Diabetic Retinopathy - diagnosis ; Diagnostic Techniques, Ophthalmological ; Discriminant analysis ; Edema ; Grading ; Human Physiology ; Humans ; Image Interpretation, Computer-Assisted - methods ; Imaging ; Information systems ; Macular Edema - classification ; Macular Edema - diagnosis ; Medical diagnosis ; Medical services ; Middle Aged ; Morphology ; Original Article ; Radiology ; Redundancy ; Regression analysis ; ROC Curve ; Spectra ; Studies ; Support vector machines ; Visual acuity ; Young Adult</subject><ispartof>Medical & biological engineering & computing, 2015-12, Vol.53 (12), p.1319-1331</ispartof><rights>International Federation for Medical and Biological Engineering 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</citedby><cites>FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1737142926/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1737142926?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25894464$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mookiah, Muthu Rama Krishnan</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Chandran, Vinod</creatorcontrib><creatorcontrib>Martis, Roshan Joy</creatorcontrib><creatorcontrib>Tan, Jen Hong</creatorcontrib><creatorcontrib>Koh, Joel E. W.</creatorcontrib><creatorcontrib>Chua, Chua Kuang</creatorcontrib><creatorcontrib>Tong, Louis</creatorcontrib><creatorcontrib>Laude, Augustinus</creatorcontrib><title>Application of higher-order spectra for automated grading of diabetic maculopathy</title><title>Medical & biological engineering & computing</title><addtitle>Med Biol Eng Comput</addtitle><addtitle>Med Biol Eng Comput</addtitle><description>Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.</description><subject>Adult</subject><subject>Analysis</subject><subject>Automation</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical engineering</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedicine</subject><subject>Computer Applications</subject><subject>Computer engineering</subject><subject>Datasets</subject><subject>Diabetes</subject><subject>Diabetic retinopathy</subject><subject>Diabetic Retinopathy - classification</subject><subject>Diabetic Retinopathy - diagnosis</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Discriminant analysis</subject><subject>Edema</subject><subject>Grading</subject><subject>Human Physiology</subject><subject>Humans</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging</subject><subject>Information systems</subject><subject>Macular Edema - classification</subject><subject>Macular Edema - diagnosis</subject><subject>Medical diagnosis</subject><subject>Medical services</subject><subject>Middle Aged</subject><subject>Morphology</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Redundancy</subject><subject>Regression analysis</subject><subject>ROC Curve</subject><subject>Spectra</subject><subject>Studies</subject><subject>Support vector machines</subject><subject>Visual acuity</subject><subject>Young Adult</subject><issn>0140-0118</issn><issn>1741-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNkcFq3DAQhkVJSLabPEAvxZBLLm41Y8mSjyEkbWGhFJKzGEvaXS-25Ur2IW9fm92EUijkNIf55p8ZPsY-Af8CnKuvCUCCyjnIHFDpXH1gK1ACci6EOGMrDoLPXdCX7GNKB84RJIoLdolSV0KUYsV-3Q1D21gam9BnYZvtm93exzxE52OWBm_HSNk2xIymMXQ0epftIrmm3y20a6j2Y2OzjuzUhoHG_csVO99Sm_z1qa7Z8-PD0_33fPPz24_7u01upYQxJ41WV7VCKjQoXuiydljXrnYeFQKVFpBK7awrsFLWkicsRGl5URVKlVCs2e0xd4jh9-TTaLomWd-21PswJQNKaS5Lyct3oBIQK8nVO9BCC42IfEZv_kEPYYr9_PNCKRBY4bIbjpSNIaXot2aITUfxxQA3i0VztGhmi2axaJYjPp-Sp7rz7m3iVdsM4BFIc6vf-fjX6v-m_gHuJKWp</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Mookiah, Muthu Rama Krishnan</creator><creator>Acharya, U. Rajendra</creator><creator>Chandran, Vinod</creator><creator>Martis, Roshan Joy</creator><creator>Tan, Jen Hong</creator><creator>Koh, Joel E. W.</creator><creator>Chua, Chua Kuang</creator><creator>Tong, Louis</creator><creator>Laude, Augustinus</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7RV</scope><scope>7SC</scope><scope>7TB</scope><scope>7TS</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>M7Z</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope></search><sort><creationdate>20151201</creationdate><title>Application of higher-order spectra for automated grading of diabetic maculopathy</title><author>Mookiah, Muthu Rama Krishnan ; Acharya, U. Rajendra ; Chandran, Vinod ; Martis, Roshan Joy ; Tan, Jen Hong ; Koh, Joel E. W. ; Chua, Chua Kuang ; Tong, Louis ; Laude, Augustinus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adult</topic><topic>Analysis</topic><topic>Automation</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical engineering</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedicine</topic><topic>Computer Applications</topic><topic>Computer engineering</topic><topic>Datasets</topic><topic>Diabetes</topic><topic>Diabetic retinopathy</topic><topic>Diabetic Retinopathy - classification</topic><topic>Diabetic Retinopathy - diagnosis</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Discriminant analysis</topic><topic>Edema</topic><topic>Grading</topic><topic>Human Physiology</topic><topic>Humans</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging</topic><topic>Information systems</topic><topic>Macular Edema - classification</topic><topic>Macular Edema - diagnosis</topic><topic>Medical diagnosis</topic><topic>Medical services</topic><topic>Middle Aged</topic><topic>Morphology</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Redundancy</topic><topic>Regression analysis</topic><topic>ROC Curve</topic><topic>Spectra</topic><topic>Studies</topic><topic>Support vector machines</topic><topic>Visual acuity</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mookiah, Muthu Rama Krishnan</creatorcontrib><creatorcontrib>Acharya, U. Rajendra</creatorcontrib><creatorcontrib>Chandran, Vinod</creatorcontrib><creatorcontrib>Martis, Roshan Joy</creatorcontrib><creatorcontrib>Tan, Jen Hong</creatorcontrib><creatorcontrib>Koh, Joel E. W.</creatorcontrib><creatorcontrib>Chua, Chua Kuang</creatorcontrib><creatorcontrib>Tong, Louis</creatorcontrib><creatorcontrib>Laude, Augustinus</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Physical Education Index</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biochemistry Abstracts 1</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><jtitle>Medical & biological engineering & computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mookiah, Muthu Rama Krishnan</au><au>Acharya, U. Rajendra</au><au>Chandran, Vinod</au><au>Martis, Roshan Joy</au><au>Tan, Jen Hong</au><au>Koh, Joel E. W.</au><au>Chua, Chua Kuang</au><au>Tong, Louis</au><au>Laude, Augustinus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of higher-order spectra for automated grading of diabetic maculopathy</atitle><jtitle>Medical & biological engineering & computing</jtitle><stitle>Med Biol Eng Comput</stitle><addtitle>Med Biol Eng Comput</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>53</volume><issue>12</issue><spage>1319</spage><epage>1331</epage><pages>1319-1331</pages><issn>0140-0118</issn><eissn>1741-0444</eissn><abstract>Diabetic macular edema (DME) is one of the most common causes of visual loss among diabetes mellitus patients. Early detection and successive treatment may improve the visual acuity. DME is mainly graded into non-clinically significant macular edema (NCSME) and clinically significant macular edema according to the location of hard exudates in the macula region. DME can be identified by manual examination of fundus images. It is laborious and resource intensive. Hence, in this work, automated grading of DME is proposed using higher-order spectra (HOS) of Radon transform projections of the fundus images. We have used third-order cumulants and bispectrum magnitude, in this work, as features, and compared their performance. They can capture subtle changes in the fundus image. Spectral regression discriminant analysis (SRDA) reduces feature dimension, and minimum redundancy maximum relevance method is used to rank the significant SRDA components. Ranked features are fed to various supervised classifiers, viz. Naive Bayes, AdaBoost and support vector machine, to discriminate No DME, NCSME and clinically significant macular edema classes. The performance of our system is evaluated using the publicly available MESSIDOR dataset (300 images) and also verified with a local dataset (300 images). Our results show that HOS cumulants and bispectrum magnitude obtained an average accuracy of 95.56 and 94.39 % for MESSIDOR dataset and 95.93 and 93.33 % for local dataset, respectively.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>25894464</pmid><doi>10.1007/s11517-015-1278-7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-0118 |
ispartof | Medical & biological engineering & computing, 2015-12, Vol.53 (12), p.1319-1331 |
issn | 0140-0118 1741-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1778056506 |
source | Business Source Ultimate; ABI/INFORM Global; Springer Nature |
subjects | Adult Analysis Automation Biomedical and Life Sciences Biomedical engineering Biomedical Engineering and Bioengineering Biomedicine Computer Applications Computer engineering Datasets Diabetes Diabetic retinopathy Diabetic Retinopathy - classification Diabetic Retinopathy - diagnosis Diagnostic Techniques, Ophthalmological Discriminant analysis Edema Grading Human Physiology Humans Image Interpretation, Computer-Assisted - methods Imaging Information systems Macular Edema - classification Macular Edema - diagnosis Medical diagnosis Medical services Middle Aged Morphology Original Article Radiology Redundancy Regression analysis ROC Curve Spectra Studies Support vector machines Visual acuity Young Adult |
title | Application of higher-order spectra for automated grading of diabetic maculopathy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T00%3A56%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20higher-order%20spectra%20for%20automated%20grading%20of%20diabetic%20maculopathy&rft.jtitle=Medical%20&%20biological%20engineering%20&%20computing&rft.au=Mookiah,%20Muthu%20Rama%20Krishnan&rft.date=2015-12-01&rft.volume=53&rft.issue=12&rft.spage=1319&rft.epage=1331&rft.pages=1319-1331&rft.issn=0140-0118&rft.eissn=1741-0444&rft_id=info:doi/10.1007/s11517-015-1278-7&rft_dat=%3Cproquest_cross%3E1738482220%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c551t-a82c89b72a38170386bd2bbdbde2721a6c12a68dcd3297ccaea2346c039377613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1737142926&rft_id=info:pmid/25894464&rfr_iscdi=true |