Loading…

Exact solution of the one-dimensional Klein–Gordon equation with scalar and vector linear potentials in the presence of a minimal length

Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energ...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2010-02, Vol.19 (2), p.020305-020305
Main Authors: Chargui, Y, Chetouani, L, Trabelsi, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-97f8e0e589f442de2af8b7e90c5fe2bd6f749ad110459f80a5753f5359ead2d33
cites cdi_FETCH-LOGICAL-c396t-97f8e0e589f442de2af8b7e90c5fe2bd6f749ad110459f80a5753f5359ead2d33
container_end_page 020305
container_issue 2
container_start_page 020305
container_title Chinese physics B
container_volume 19
creator Chargui, Y
Chetouani, L
Trabelsi, A
description Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.
doi_str_mv 10.1088/1674-1056/19/2/020305
format article
fullrecord <record><control><sourceid>proquest_iop_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1778057079</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>849481634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-97f8e0e589f442de2af8b7e90c5fe2bd6f749ad110459f80a5753f5359ead2d33</originalsourceid><addsrcrecordid>eNp90btuFDEUBuARIhJL4BGQ3EHBsL6O7RJFSYiIRENqyxkfs0Zee2J7uXSpaXlDniTeLIImSmXp6PvPkfUPwyuC3xGs1JpMko8Ei2lN9JquMcUMiyfDimKhRqYYfzqs_plnw_Nav2I8EUzZavh1-sPODdUcdy3khLJHbQMoJxhd2EKqfWgj-hghpD-3v89zcV3Bzc7e8--hbVCdbbQF2eTQN5hbLiiGBH2y5AapBRsrCul-71KgQpphf8eibUhh27dHSF_a5sVw5DuFl3_f4-Hq7PTzyYfx8tP5xcn7y3Fmemqjll4BBqG055w6oNarawkaz8IDvXaTl1xbRwjmQnuFrZCCecGEBuuoY-x4eH3Yu5R8s4PazDbUGWK0CfKuGsU1V2RivMs3j0oipcJCYqk7FQc6l1xrAW-W0v9WfhqCzb4ls2_A7BswRBtqDi313NtDLuTlf-QhahbnO8cP8Ecv3AG00qPx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778057079</pqid></control><display><type>article</type><title>Exact solution of the one-dimensional Klein–Gordon equation with scalar and vector linear potentials in the presence of a minimal length</title><source>Institute of Physics</source><creator>Chargui, Y ; Chetouani, L ; Trabelsi, A</creator><creatorcontrib>Chargui, Y ; Chetouani, L ; Trabelsi, A</creatorcontrib><description>Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.</description><identifier>ISSN: 1674-1056</identifier><identifier>EISSN: 2058-3834</identifier><identifier>DOI: 10.1088/1674-1056/19/2/020305</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Exact solutions ; Mathematical analysis ; Quantum mechanics ; Representations ; Scalars ; Uncertainty ; Vectors (mathematics) ; Wave functions</subject><ispartof>Chinese physics B, 2010-02, Vol.19 (2), p.020305-020305</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-97f8e0e589f442de2af8b7e90c5fe2bd6f749ad110459f80a5753f5359ead2d33</citedby><cites>FETCH-LOGICAL-c396t-97f8e0e589f442de2af8b7e90c5fe2bd6f749ad110459f80a5753f5359ead2d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chargui, Y</creatorcontrib><creatorcontrib>Chetouani, L</creatorcontrib><creatorcontrib>Trabelsi, A</creatorcontrib><title>Exact solution of the one-dimensional Klein–Gordon equation with scalar and vector linear potentials in the presence of a minimal length</title><title>Chinese physics B</title><description>Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.</description><subject>Exact solutions</subject><subject>Mathematical analysis</subject><subject>Quantum mechanics</subject><subject>Representations</subject><subject>Scalars</subject><subject>Uncertainty</subject><subject>Vectors (mathematics)</subject><subject>Wave functions</subject><issn>1674-1056</issn><issn>2058-3834</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp90btuFDEUBuARIhJL4BGQ3EHBsL6O7RJFSYiIRENqyxkfs0Zee2J7uXSpaXlDniTeLIImSmXp6PvPkfUPwyuC3xGs1JpMko8Ei2lN9JquMcUMiyfDimKhRqYYfzqs_plnw_Nav2I8EUzZavh1-sPODdUcdy3khLJHbQMoJxhd2EKqfWgj-hghpD-3v89zcV3Bzc7e8--hbVCdbbQF2eTQN5hbLiiGBH2y5AapBRsrCul-71KgQpphf8eibUhh27dHSF_a5sVw5DuFl3_f4-Hq7PTzyYfx8tP5xcn7y3Fmemqjll4BBqG055w6oNarawkaz8IDvXaTl1xbRwjmQnuFrZCCecGEBuuoY-x4eH3Yu5R8s4PazDbUGWK0CfKuGsU1V2RivMs3j0oipcJCYqk7FQc6l1xrAW-W0v9WfhqCzb4ls2_A7BswRBtqDi313NtDLuTlf-QhahbnO8cP8Ecv3AG00qPx</recordid><startdate>20100201</startdate><enddate>20100201</enddate><creator>Chargui, Y</creator><creator>Chetouani, L</creator><creator>Trabelsi, A</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20100201</creationdate><title>Exact solution of the one-dimensional Klein–Gordon equation with scalar and vector linear potentials in the presence of a minimal length</title><author>Chargui, Y ; Chetouani, L ; Trabelsi, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-97f8e0e589f442de2af8b7e90c5fe2bd6f749ad110459f80a5753f5359ead2d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Exact solutions</topic><topic>Mathematical analysis</topic><topic>Quantum mechanics</topic><topic>Representations</topic><topic>Scalars</topic><topic>Uncertainty</topic><topic>Vectors (mathematics)</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chargui, Y</creatorcontrib><creatorcontrib>Chetouani, L</creatorcontrib><creatorcontrib>Trabelsi, A</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chargui, Y</au><au>Chetouani, L</au><au>Trabelsi, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact solution of the one-dimensional Klein–Gordon equation with scalar and vector linear potentials in the presence of a minimal length</atitle><jtitle>Chinese physics B</jtitle><date>2010-02-01</date><risdate>2010</risdate><volume>19</volume><issue>2</issue><spage>020305</spage><epage>020305</epage><pages>020305-020305</pages><issn>1674-1056</issn><eissn>2058-3834</eissn><abstract>Using the momentum space representation, we solve the Klein--Gordon equation in one spatial dimension for the case of mixed scalar and vector linear potentials in the context of deformed quantum mechanics characterized by a finite minimal uncertainty in position. The expressions of bound state energies and the associated wave functions are exactly obtained.</abstract><pub>IOP Publishing</pub><doi>10.1088/1674-1056/19/2/020305</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2010-02, Vol.19 (2), p.020305-020305
issn 1674-1056
2058-3834
language eng
recordid cdi_proquest_miscellaneous_1778057079
source Institute of Physics
subjects Exact solutions
Mathematical analysis
Quantum mechanics
Representations
Scalars
Uncertainty
Vectors (mathematics)
Wave functions
title Exact solution of the one-dimensional Klein–Gordon equation with scalar and vector linear potentials in the presence of a minimal length
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A49%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20solution%20of%20the%20one-dimensional%20Klein%E2%80%93Gordon%20equation%20with%20scalar%20and%20vector%20linear%20potentials%20in%20the%20presence%20of%20a%20minimal%20length&rft.jtitle=Chinese%20physics%20B&rft.au=Chargui,%20Y&rft.date=2010-02-01&rft.volume=19&rft.issue=2&rft.spage=020305&rft.epage=020305&rft.pages=020305-020305&rft.issn=1674-1056&rft.eissn=2058-3834&rft_id=info:doi/10.1088/1674-1056/19/2/020305&rft_dat=%3Cproquest_iop_p%3E849481634%3C/proquest_iop_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-97f8e0e589f442de2af8b7e90c5fe2bd6f749ad110459f80a5753f5359ead2d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778057079&rft_id=info:pmid/&rfr_iscdi=true