Loading…

Vestibulo-ocular Physiology Underlying Vestibular Hypofunction

The vestibular system detects motion of the head and maintains stability of images on the fovea of the retina as well as postural control during head motion. Signals representing angular and translational motion of the head as well as the tilt of the head relative to gravity are transduced by the ve...

Full description

Saved in:
Bibliographic Details
Published in:Physical therapy 2004-04, Vol.84 (4), p.373-385
Main Authors: Schubert, Michael C, Minor, Lloyd B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The vestibular system detects motion of the head and maintains stability of images on the fovea of the retina as well as postural control during head motion. Signals representing angular and translational motion of the head as well as the tilt of the head relative to gravity are transduced by the vestibular end organs in the inner ear. This sensory information is then used to control reflexes responsible for maintaining the stability of images on the fovea (the central area of the retina where visual acuity is best) during head movements. Information from the vestibular receptors also is important for posture and gait. When vestibular function is normal, these reflexes operate with exquisite accuracy and, in the case of eye movements, at very short latencies. Knowledge of vestibular anatomy and physiology is important for physical therapists to effectively diagnose and manage people with vestibular dysfunction. The purposes of this article are to review the anatomy and physiology of the vestibular system and to describe the neurophysiological mechanisms responsible for the vestibulo-ocular abnormalities in patients with vestibular hypofunction.
ISSN:0031-9023
1538-6724
DOI:10.1093/ptj/84.4.373