Loading…
Actin’g against the Ball and Chain
Spinocerebellar ataxia type 13 is a rare autosomal-dominant neurodegenerative disease induced by mutations in the voltage-dependent Kv3.3 potassium channel. Recently in Cell, Zhang et al. (2016) provide new insights into how Arp2/3-dependent actin polymerization modulates both Kv3.3 activity and its...
Saved in:
Published in: | Developmental cell 2016-04, Vol.37 (1), p.11-12 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spinocerebellar ataxia type 13 is a rare autosomal-dominant neurodegenerative disease induced by mutations in the voltage-dependent Kv3.3 potassium channel. Recently in Cell, Zhang et al. (2016) provide new insights into how Arp2/3-dependent actin polymerization modulates both Kv3.3 activity and its ability to stimulate actin polymerization via Hax-1.
Spinocerebellar ataxia type 13 is a rare autosomal-dominant neurodegenerative disease induced by mutations in the voltage-dependent Kv3.3 potassium channel. Recently in Cell, Zhang et al. (2016) provide new insights into how Arp2/3-dependent actin polymerization modulates both Kv3.3 activity and its ability to stimulate actin polymerization via Hax-1. |
---|---|
ISSN: | 1534-5807 1878-1551 |
DOI: | 10.1016/j.devcel.2016.03.014 |