Loading…

Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function

The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a mo...

Full description

Saved in:
Bibliographic Details
Published in:International immunology 2001-01, Vol.13 (1), p.31-41
Main Authors: Ritz, Ulrike, Momburg, Frank, Pircher, Hans-Peter, Strand, Dennis, Huber, Christoph, Seliger, Barbara
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033
cites cdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033
container_end_page 41
container_issue 1
container_start_page 31
container_title International immunology
container_volume 13
creator Ritz, Ulrike
Momburg, Frank
Pircher, Hans-Peter
Strand, Dennis
Huber, Christoph
Seliger, Barbara
description The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.
doi_str_mv 10.1093/intimm/13.1.31
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17798161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68140324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhyhFZHFA5ZOvJJHF8rEq_pPIhVCTUi-Uk467LxtnajoD_wQ_Gq12B4OTDPH7mHb2MvQSxBKHw2PnkxvEYcAlLhEdsAVUjihKlfMwWQtVYtCDbA_YsxnshBJYKn7IDAEBssVywX1cDZYV1vUlu8nyyPNLDTL6nyJ3naUV8NY_G8w1tkhuIp2B83EwhUeBx7mbvEr85-QQ85H8u0MDtFP6hTIxT70zKo-8urbjJC-8oG8OUt0Tn7_hRNrzldvb9NsVz9sSadaQX-_eQfTk_uzm9LK4_XlydnlwXfVU3qagbW0kpWgJFJYhKKglSQNdhWWNfyQ7INIPthLUVVdbIvrFGKIWA5aAE4iF7s_PmJPnmmPToYk_rtfE0zVGDlKqFBjL4-j_wfpqDz9k0qFpArdomQ8sd1IcpxkBWb4IbTfipQehtWXpXlgbUoHFrfbW3zt1Iw198304Gih3gYqIff-YmfNONRFnry6-3-uJWvX93_uGzVvgbokqivQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195015986</pqid></control><display><type>article</type><title>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</title><source>Oxford Journals Online</source><creator>Ritz, Ulrike ; Momburg, Frank ; Pircher, Hans-Peter ; Strand, Dennis ; Huber, Christoph ; Seliger, Barbara</creator><creatorcontrib>Ritz, Ulrike ; Momburg, Frank ; Pircher, Hans-Peter ; Strand, Dennis ; Huber, Christoph ; Seliger, Barbara</creatorcontrib><description>The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.</description><identifier>ISSN: 0953-8178</identifier><identifier>EISSN: 1460-2377</identifier><identifier>DOI: 10.1093/intimm/13.1.31</identifier><identifier>PMID: 11133832</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; antigen presentation ; Antigen Presentation - genetics ; antigen processing ; ATP Binding Cassette Transporter, Subfamily B, Member 2 ; ATP Binding Cassette Transporter, Subfamily B, Member 3 ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - immunology ; ATP-Binding Cassette Transporters - metabolism ; ATP-Binding Cassette Transporters - physiology ; Biological Transport, Active - genetics ; Biological Transport, Active - immunology ; Con A concanavalin A ; CTL cytotoxic T lymphocytes ; Cytotoxicity Tests, Immunologic ; Dimerization ; Epitopes, T-Lymphocyte - immunology ; Epitopes, T-Lymphocyte - metabolism ; ER endoplasmic reticulum ; Genetic Vectors - chemical synthesis ; Histocompatibility Antigens Class I - biosynthesis ; Histocompatibility Antigens Class I - genetics ; Humans ; LCMV lymphocytic choriomeningitis virus ; Lymphocytic choriomeningitis virus - immunology ; MCA methylcholanthrene ; MHC ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mutagenesis, Site-Directed ; Peptide Fragments - genetics ; Peptide Fragments - immunology ; Peptide Fragments - physiology ; peptide transporter ; Sequence Deletion ; SLO streptolysin O ; T cell response ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Cytotoxic - metabolism ; T-Lymphocytes, Cytotoxic - virology ; TAP transporter associated with antigen processing ; TAP1 protein ; TBS Tris-buffered saline ; Transfection ; Tumor Cells, Cultured ; β2m β2-microglobulin</subject><ispartof>International immunology, 2001-01, Vol.13 (1), p.31-41</ispartof><rights>Copyright Oxford University Press Jan 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</citedby><cites>FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11133832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ritz, Ulrike</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Pircher, Hans-Peter</creatorcontrib><creatorcontrib>Strand, Dennis</creatorcontrib><creatorcontrib>Huber, Christoph</creatorcontrib><creatorcontrib>Seliger, Barbara</creatorcontrib><title>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</title><title>International immunology</title><addtitle>Int. Immunol</addtitle><description>The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>antigen presentation</subject><subject>Antigen Presentation - genetics</subject><subject>antigen processing</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 2</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 3</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - immunology</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>ATP-Binding Cassette Transporters - physiology</subject><subject>Biological Transport, Active - genetics</subject><subject>Biological Transport, Active - immunology</subject><subject>Con A concanavalin A</subject><subject>CTL cytotoxic T lymphocytes</subject><subject>Cytotoxicity Tests, Immunologic</subject><subject>Dimerization</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Epitopes, T-Lymphocyte - metabolism</subject><subject>ER endoplasmic reticulum</subject><subject>Genetic Vectors - chemical synthesis</subject><subject>Histocompatibility Antigens Class I - biosynthesis</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Humans</subject><subject>LCMV lymphocytic choriomeningitis virus</subject><subject>Lymphocytic choriomeningitis virus - immunology</subject><subject>MCA methylcholanthrene</subject><subject>MHC</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutagenesis, Site-Directed</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - immunology</subject><subject>Peptide Fragments - physiology</subject><subject>peptide transporter</subject><subject>Sequence Deletion</subject><subject>SLO streptolysin O</subject><subject>T cell response</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Cytotoxic - metabolism</subject><subject>T-Lymphocytes, Cytotoxic - virology</subject><subject>TAP transporter associated with antigen processing</subject><subject>TAP1 protein</subject><subject>TBS Tris-buffered saline</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured</subject><subject>β2m β2-microglobulin</subject><issn>0953-8178</issn><issn>1460-2377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhyhFZHFA5ZOvJJHF8rEq_pPIhVCTUi-Uk467LxtnajoD_wQ_Gq12B4OTDPH7mHb2MvQSxBKHw2PnkxvEYcAlLhEdsAVUjihKlfMwWQtVYtCDbA_YsxnshBJYKn7IDAEBssVywX1cDZYV1vUlu8nyyPNLDTL6nyJ3naUV8NY_G8w1tkhuIp2B83EwhUeBx7mbvEr85-QQ85H8u0MDtFP6hTIxT70zKo-8urbjJC-8oG8OUt0Tn7_hRNrzldvb9NsVz9sSadaQX-_eQfTk_uzm9LK4_XlydnlwXfVU3qagbW0kpWgJFJYhKKglSQNdhWWNfyQ7INIPthLUVVdbIvrFGKIWA5aAE4iF7s_PmJPnmmPToYk_rtfE0zVGDlKqFBjL4-j_wfpqDz9k0qFpArdomQ8sd1IcpxkBWb4IbTfipQehtWXpXlgbUoHFrfbW3zt1Iw198304Gih3gYqIff-YmfNONRFnry6-3-uJWvX93_uGzVvgbokqivQ</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Ritz, Ulrike</creator><creator>Momburg, Frank</creator><creator>Pircher, Hans-Peter</creator><creator>Strand, Dennis</creator><creator>Huber, Christoph</creator><creator>Seliger, Barbara</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20010101</creationdate><title>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</title><author>Ritz, Ulrike ; Momburg, Frank ; Pircher, Hans-Peter ; Strand, Dennis ; Huber, Christoph ; Seliger, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>antigen presentation</topic><topic>Antigen Presentation - genetics</topic><topic>antigen processing</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 2</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 3</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - immunology</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>ATP-Binding Cassette Transporters - physiology</topic><topic>Biological Transport, Active - genetics</topic><topic>Biological Transport, Active - immunology</topic><topic>Con A concanavalin A</topic><topic>CTL cytotoxic T lymphocytes</topic><topic>Cytotoxicity Tests, Immunologic</topic><topic>Dimerization</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Epitopes, T-Lymphocyte - metabolism</topic><topic>ER endoplasmic reticulum</topic><topic>Genetic Vectors - chemical synthesis</topic><topic>Histocompatibility Antigens Class I - biosynthesis</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Humans</topic><topic>LCMV lymphocytic choriomeningitis virus</topic><topic>Lymphocytic choriomeningitis virus - immunology</topic><topic>MCA methylcholanthrene</topic><topic>MHC</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutagenesis, Site-Directed</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - immunology</topic><topic>Peptide Fragments - physiology</topic><topic>peptide transporter</topic><topic>Sequence Deletion</topic><topic>SLO streptolysin O</topic><topic>T cell response</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Cytotoxic - metabolism</topic><topic>T-Lymphocytes, Cytotoxic - virology</topic><topic>TAP transporter associated with antigen processing</topic><topic>TAP1 protein</topic><topic>TBS Tris-buffered saline</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured</topic><topic>β2m β2-microglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritz, Ulrike</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Pircher, Hans-Peter</creatorcontrib><creatorcontrib>Strand, Dennis</creatorcontrib><creatorcontrib>Huber, Christoph</creatorcontrib><creatorcontrib>Seliger, Barbara</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritz, Ulrike</au><au>Momburg, Frank</au><au>Pircher, Hans-Peter</au><au>Strand, Dennis</au><au>Huber, Christoph</au><au>Seliger, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</atitle><jtitle>International immunology</jtitle><addtitle>Int. Immunol</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>13</volume><issue>1</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>0953-8178</issn><eissn>1460-2377</eissn><abstract>The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11133832</pmid><doi>10.1093/intimm/13.1.31</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0953-8178
ispartof International immunology, 2001-01, Vol.13 (1), p.31-41
issn 0953-8178
1460-2377
language eng
recordid cdi_proquest_miscellaneous_17798161
source Oxford Journals Online
subjects Amino Acid Sequence
Animals
antigen presentation
Antigen Presentation - genetics
antigen processing
ATP Binding Cassette Transporter, Subfamily B, Member 2
ATP Binding Cassette Transporter, Subfamily B, Member 3
ATP-Binding Cassette Transporters - genetics
ATP-Binding Cassette Transporters - immunology
ATP-Binding Cassette Transporters - metabolism
ATP-Binding Cassette Transporters - physiology
Biological Transport, Active - genetics
Biological Transport, Active - immunology
Con A concanavalin A
CTL cytotoxic T lymphocytes
Cytotoxicity Tests, Immunologic
Dimerization
Epitopes, T-Lymphocyte - immunology
Epitopes, T-Lymphocyte - metabolism
ER endoplasmic reticulum
Genetic Vectors - chemical synthesis
Histocompatibility Antigens Class I - biosynthesis
Histocompatibility Antigens Class I - genetics
Humans
LCMV lymphocytic choriomeningitis virus
Lymphocytic choriomeningitis virus - immunology
MCA methylcholanthrene
MHC
Mice
Mice, Inbred C57BL
Mice, Knockout
Mutagenesis, Site-Directed
Peptide Fragments - genetics
Peptide Fragments - immunology
Peptide Fragments - physiology
peptide transporter
Sequence Deletion
SLO streptolysin O
T cell response
T-Lymphocytes, Cytotoxic - immunology
T-Lymphocytes, Cytotoxic - metabolism
T-Lymphocytes, Cytotoxic - virology
TAP transporter associated with antigen processing
TAP1 protein
TBS Tris-buffered saline
Transfection
Tumor Cells, Cultured
β2m β2-microglobulin
title Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20sequences%20in%20the%20human%20peptide%20transporter%20subunit%20TAP1%20required%20for%20transporter%20associated%20with%20antigen%20processing%20(TAP)%20function&rft.jtitle=International%20immunology&rft.au=Ritz,%20Ulrike&rft.date=2001-01-01&rft.volume=13&rft.issue=1&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=0953-8178&rft.eissn=1460-2377&rft_id=info:doi/10.1093/intimm/13.1.31&rft_dat=%3Cproquest_cross%3E68140324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195015986&rft_id=info:pmid/11133832&rfr_iscdi=true