Loading…
Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function
The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a mo...
Saved in:
Published in: | International immunology 2001-01, Vol.13 (1), p.31-41 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033 |
---|---|
cites | cdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033 |
container_end_page | 41 |
container_issue | 1 |
container_start_page | 31 |
container_title | International immunology |
container_volume | 13 |
creator | Ritz, Ulrike Momburg, Frank Pircher, Hans-Peter Strand, Dennis Huber, Christoph Seliger, Barbara |
description | The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process. |
doi_str_mv | 10.1093/intimm/13.1.31 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_17798161</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68140324</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</originalsourceid><addsrcrecordid>eNpdkU1v1DAQhi0EokvhyhFZHFA5ZOvJJHF8rEq_pPIhVCTUi-Uk467LxtnajoD_wQ_Gq12B4OTDPH7mHb2MvQSxBKHw2PnkxvEYcAlLhEdsAVUjihKlfMwWQtVYtCDbA_YsxnshBJYKn7IDAEBssVywX1cDZYV1vUlu8nyyPNLDTL6nyJ3naUV8NY_G8w1tkhuIp2B83EwhUeBx7mbvEr85-QQ85H8u0MDtFP6hTIxT70zKo-8urbjJC-8oG8OUt0Tn7_hRNrzldvb9NsVz9sSadaQX-_eQfTk_uzm9LK4_XlydnlwXfVU3qagbW0kpWgJFJYhKKglSQNdhWWNfyQ7INIPthLUVVdbIvrFGKIWA5aAE4iF7s_PmJPnmmPToYk_rtfE0zVGDlKqFBjL4-j_wfpqDz9k0qFpArdomQ8sd1IcpxkBWb4IbTfipQehtWXpXlgbUoHFrfbW3zt1Iw198304Gih3gYqIff-YmfNONRFnry6-3-uJWvX93_uGzVvgbokqivQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195015986</pqid></control><display><type>article</type><title>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</title><source>Oxford Journals Online</source><creator>Ritz, Ulrike ; Momburg, Frank ; Pircher, Hans-Peter ; Strand, Dennis ; Huber, Christoph ; Seliger, Barbara</creator><creatorcontrib>Ritz, Ulrike ; Momburg, Frank ; Pircher, Hans-Peter ; Strand, Dennis ; Huber, Christoph ; Seliger, Barbara</creatorcontrib><description>The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.</description><identifier>ISSN: 0953-8178</identifier><identifier>EISSN: 1460-2377</identifier><identifier>DOI: 10.1093/intimm/13.1.31</identifier><identifier>PMID: 11133832</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Animals ; antigen presentation ; Antigen Presentation - genetics ; antigen processing ; ATP Binding Cassette Transporter, Subfamily B, Member 2 ; ATP Binding Cassette Transporter, Subfamily B, Member 3 ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - immunology ; ATP-Binding Cassette Transporters - metabolism ; ATP-Binding Cassette Transporters - physiology ; Biological Transport, Active - genetics ; Biological Transport, Active - immunology ; Con A concanavalin A ; CTL cytotoxic T lymphocytes ; Cytotoxicity Tests, Immunologic ; Dimerization ; Epitopes, T-Lymphocyte - immunology ; Epitopes, T-Lymphocyte - metabolism ; ER endoplasmic reticulum ; Genetic Vectors - chemical synthesis ; Histocompatibility Antigens Class I - biosynthesis ; Histocompatibility Antigens Class I - genetics ; Humans ; LCMV lymphocytic choriomeningitis virus ; Lymphocytic choriomeningitis virus - immunology ; MCA methylcholanthrene ; MHC ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Mutagenesis, Site-Directed ; Peptide Fragments - genetics ; Peptide Fragments - immunology ; Peptide Fragments - physiology ; peptide transporter ; Sequence Deletion ; SLO streptolysin O ; T cell response ; T-Lymphocytes, Cytotoxic - immunology ; T-Lymphocytes, Cytotoxic - metabolism ; T-Lymphocytes, Cytotoxic - virology ; TAP transporter associated with antigen processing ; TAP1 protein ; TBS Tris-buffered saline ; Transfection ; Tumor Cells, Cultured ; β2m β2-microglobulin</subject><ispartof>International immunology, 2001-01, Vol.13 (1), p.31-41</ispartof><rights>Copyright Oxford University Press Jan 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</citedby><cites>FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11133832$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ritz, Ulrike</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Pircher, Hans-Peter</creatorcontrib><creatorcontrib>Strand, Dennis</creatorcontrib><creatorcontrib>Huber, Christoph</creatorcontrib><creatorcontrib>Seliger, Barbara</creatorcontrib><title>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</title><title>International immunology</title><addtitle>Int. Immunol</addtitle><description>The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>antigen presentation</subject><subject>Antigen Presentation - genetics</subject><subject>antigen processing</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 2</subject><subject>ATP Binding Cassette Transporter, Subfamily B, Member 3</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - immunology</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>ATP-Binding Cassette Transporters - physiology</subject><subject>Biological Transport, Active - genetics</subject><subject>Biological Transport, Active - immunology</subject><subject>Con A concanavalin A</subject><subject>CTL cytotoxic T lymphocytes</subject><subject>Cytotoxicity Tests, Immunologic</subject><subject>Dimerization</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Epitopes, T-Lymphocyte - metabolism</subject><subject>ER endoplasmic reticulum</subject><subject>Genetic Vectors - chemical synthesis</subject><subject>Histocompatibility Antigens Class I - biosynthesis</subject><subject>Histocompatibility Antigens Class I - genetics</subject><subject>Humans</subject><subject>LCMV lymphocytic choriomeningitis virus</subject><subject>Lymphocytic choriomeningitis virus - immunology</subject><subject>MCA methylcholanthrene</subject><subject>MHC</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Mutagenesis, Site-Directed</subject><subject>Peptide Fragments - genetics</subject><subject>Peptide Fragments - immunology</subject><subject>Peptide Fragments - physiology</subject><subject>peptide transporter</subject><subject>Sequence Deletion</subject><subject>SLO streptolysin O</subject><subject>T cell response</subject><subject>T-Lymphocytes, Cytotoxic - immunology</subject><subject>T-Lymphocytes, Cytotoxic - metabolism</subject><subject>T-Lymphocytes, Cytotoxic - virology</subject><subject>TAP transporter associated with antigen processing</subject><subject>TAP1 protein</subject><subject>TBS Tris-buffered saline</subject><subject>Transfection</subject><subject>Tumor Cells, Cultured</subject><subject>β2m β2-microglobulin</subject><issn>0953-8178</issn><issn>1460-2377</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAQhi0EokvhyhFZHFA5ZOvJJHF8rEq_pPIhVCTUi-Uk467LxtnajoD_wQ_Gq12B4OTDPH7mHb2MvQSxBKHw2PnkxvEYcAlLhEdsAVUjihKlfMwWQtVYtCDbA_YsxnshBJYKn7IDAEBssVywX1cDZYV1vUlu8nyyPNLDTL6nyJ3naUV8NY_G8w1tkhuIp2B83EwhUeBx7mbvEr85-QQ85H8u0MDtFP6hTIxT70zKo-8urbjJC-8oG8OUt0Tn7_hRNrzldvb9NsVz9sSadaQX-_eQfTk_uzm9LK4_XlydnlwXfVU3qagbW0kpWgJFJYhKKglSQNdhWWNfyQ7INIPthLUVVdbIvrFGKIWA5aAE4iF7s_PmJPnmmPToYk_rtfE0zVGDlKqFBjL4-j_wfpqDz9k0qFpArdomQ8sd1IcpxkBWb4IbTfipQehtWXpXlgbUoHFrfbW3zt1Iw198304Gih3gYqIff-YmfNONRFnry6-3-uJWvX93_uGzVvgbokqivQ</recordid><startdate>20010101</startdate><enddate>20010101</enddate><creator>Ritz, Ulrike</creator><creator>Momburg, Frank</creator><creator>Pircher, Hans-Peter</creator><creator>Strand, Dennis</creator><creator>Huber, Christoph</creator><creator>Seliger, Barbara</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20010101</creationdate><title>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</title><author>Ritz, Ulrike ; Momburg, Frank ; Pircher, Hans-Peter ; Strand, Dennis ; Huber, Christoph ; Seliger, Barbara</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>antigen presentation</topic><topic>Antigen Presentation - genetics</topic><topic>antigen processing</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 2</topic><topic>ATP Binding Cassette Transporter, Subfamily B, Member 3</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - immunology</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>ATP-Binding Cassette Transporters - physiology</topic><topic>Biological Transport, Active - genetics</topic><topic>Biological Transport, Active - immunology</topic><topic>Con A concanavalin A</topic><topic>CTL cytotoxic T lymphocytes</topic><topic>Cytotoxicity Tests, Immunologic</topic><topic>Dimerization</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Epitopes, T-Lymphocyte - metabolism</topic><topic>ER endoplasmic reticulum</topic><topic>Genetic Vectors - chemical synthesis</topic><topic>Histocompatibility Antigens Class I - biosynthesis</topic><topic>Histocompatibility Antigens Class I - genetics</topic><topic>Humans</topic><topic>LCMV lymphocytic choriomeningitis virus</topic><topic>Lymphocytic choriomeningitis virus - immunology</topic><topic>MCA methylcholanthrene</topic><topic>MHC</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Mutagenesis, Site-Directed</topic><topic>Peptide Fragments - genetics</topic><topic>Peptide Fragments - immunology</topic><topic>Peptide Fragments - physiology</topic><topic>peptide transporter</topic><topic>Sequence Deletion</topic><topic>SLO streptolysin O</topic><topic>T cell response</topic><topic>T-Lymphocytes, Cytotoxic - immunology</topic><topic>T-Lymphocytes, Cytotoxic - metabolism</topic><topic>T-Lymphocytes, Cytotoxic - virology</topic><topic>TAP transporter associated with antigen processing</topic><topic>TAP1 protein</topic><topic>TBS Tris-buffered saline</topic><topic>Transfection</topic><topic>Tumor Cells, Cultured</topic><topic>β2m β2-microglobulin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ritz, Ulrike</creatorcontrib><creatorcontrib>Momburg, Frank</creatorcontrib><creatorcontrib>Pircher, Hans-Peter</creatorcontrib><creatorcontrib>Strand, Dennis</creatorcontrib><creatorcontrib>Huber, Christoph</creatorcontrib><creatorcontrib>Seliger, Barbara</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>International immunology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ritz, Ulrike</au><au>Momburg, Frank</au><au>Pircher, Hans-Peter</au><au>Strand, Dennis</au><au>Huber, Christoph</au><au>Seliger, Barbara</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function</atitle><jtitle>International immunology</jtitle><addtitle>Int. Immunol</addtitle><date>2001-01-01</date><risdate>2001</risdate><volume>13</volume><issue>1</issue><spage>31</spage><epage>41</epage><pages>31-41</pages><issn>0953-8178</issn><eissn>1460-2377</eissn><abstract>The heterodimeric peptide transporter associated with antigen processing (TAP) consisting of the subunits TAP1 and TAP2 mediates the transport of cytosolic peptides into the lumen of the endoplasmic reticulum (ER). In order to accurately define domains required for peptide transporter function, a molecular approach based on the construction of a panel of human TAP1 mutants and their expression in TAP1–/– cells was employed. The characteristics and biological activity of the various TAP1 mutants were determined, and compared to that of wild-type TAP1 and TAP1–/– control cells. All mutant TAP1 proteins were localized in the ER and were capable of forming complexes with the TAP2 subunit. However, the TAP1 mutants analyzed transported peptides with different efficiencies and displayed a heterogeneous MHC class I surface expression pattern which was directly associated with their susceptibility to cytotoxic T lymphocyte-mediated lysis. Based on this study, the TAP1 mutants can be divided into three categories: those expressing a similar phenotype compared to TAP1–/– or wild-type TAP1 cells respectively, and those representing an intermediate phenotype in terms of peptide transport rate, MHC class I surface expression and immune recognition. Thus, the results provide evidence that specific regions in the TAP1 subunit are crucial for the proper processing and presentation of cytosolic antigens to MHC class I-restricted T cells, whereas others may play a minor role in this process.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>11133832</pmid><doi>10.1093/intimm/13.1.31</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0953-8178 |
ispartof | International immunology, 2001-01, Vol.13 (1), p.31-41 |
issn | 0953-8178 1460-2377 |
language | eng |
recordid | cdi_proquest_miscellaneous_17798161 |
source | Oxford Journals Online |
subjects | Amino Acid Sequence Animals antigen presentation Antigen Presentation - genetics antigen processing ATP Binding Cassette Transporter, Subfamily B, Member 2 ATP Binding Cassette Transporter, Subfamily B, Member 3 ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - immunology ATP-Binding Cassette Transporters - metabolism ATP-Binding Cassette Transporters - physiology Biological Transport, Active - genetics Biological Transport, Active - immunology Con A concanavalin A CTL cytotoxic T lymphocytes Cytotoxicity Tests, Immunologic Dimerization Epitopes, T-Lymphocyte - immunology Epitopes, T-Lymphocyte - metabolism ER endoplasmic reticulum Genetic Vectors - chemical synthesis Histocompatibility Antigens Class I - biosynthesis Histocompatibility Antigens Class I - genetics Humans LCMV lymphocytic choriomeningitis virus Lymphocytic choriomeningitis virus - immunology MCA methylcholanthrene MHC Mice Mice, Inbred C57BL Mice, Knockout Mutagenesis, Site-Directed Peptide Fragments - genetics Peptide Fragments - immunology Peptide Fragments - physiology peptide transporter Sequence Deletion SLO streptolysin O T cell response T-Lymphocytes, Cytotoxic - immunology T-Lymphocytes, Cytotoxic - metabolism T-Lymphocytes, Cytotoxic - virology TAP transporter associated with antigen processing TAP1 protein TBS Tris-buffered saline Transfection Tumor Cells, Cultured β2m β2-microglobulin |
title | Identification of sequences in the human peptide transporter subunit TAP1 required for transporter associated with antigen processing (TAP) function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A05%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20sequences%20in%20the%20human%20peptide%20transporter%20subunit%20TAP1%20required%20for%20transporter%20associated%20with%20antigen%20processing%20(TAP)%20function&rft.jtitle=International%20immunology&rft.au=Ritz,%20Ulrike&rft.date=2001-01-01&rft.volume=13&rft.issue=1&rft.spage=31&rft.epage=41&rft.pages=31-41&rft.issn=0953-8178&rft.eissn=1460-2377&rft_id=info:doi/10.1093/intimm/13.1.31&rft_dat=%3Cproquest_cross%3E68140324%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-56f47708e19e21047971701bb3253c47b1ea6dfb0ff4e4fa7c6fa0993132d9033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195015986&rft_id=info:pmid/11133832&rfr_iscdi=true |