Loading…
Flexible behavioral capture-recapture modeling
We develop alternative strategies for building and fitting parametric capture–recapture models for closed populations which can be used to address a better understanding of behavioral patterns. In the perspective of transition models, we first rely on a conditional probability parameterization. A la...
Saved in:
Published in: | Biometrics 2016-03, Vol.72 (1), p.125-135 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We develop alternative strategies for building and fitting parametric capture–recapture models for closed populations which can be used to address a better understanding of behavioral patterns. In the perspective of transition models, we first rely on a conditional probability parameterization. A large subset of standard capture–recapture models can be regarded as a suitable partitioning in equivalence classes of the full set of conditional probability parameters. We exploit a regression approach combined with the use of new suitable summaries of the conditioning binary partial capture histories as a device for enlarging the scope of behavioral models and also exploring the range of all possible partitions. We show how one can easily find unconditional MLE of such models within a generalized linear model framework. We illustrate the potential of our approach with the anlaysis of some known datasets and a simulation study. |
---|---|
ISSN: | 0006-341X 1541-0420 |
DOI: | 10.1111/biom.12417 |