Loading…
A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures
ABSTRACT This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three...
Saved in:
Published in: | International journal of climatology 2016-01, Vol.36 (1), p.28-42 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743 |
---|---|
cites | |
container_end_page | 42 |
container_issue | 1 |
container_start_page | 28 |
container_title | International journal of climatology |
container_volume | 36 |
creator | Anderson, Ashley N. Browning, Joshua M. Comeaux, Joey Hering, Amanda S. Nychka, Douglas |
description | ABSTRACT
This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station. |
doi_str_mv | 10.1002/joc.4327 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1780518349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780518349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743</originalsourceid><addsrcrecordid>eNpdkE1LxDAURYMoOI6CPyHgxk01adImWcrgJ4IbXZc3ySuToW3GJEXm35tRV27e3ZxzeVxCLjm74YzVt9tgb6So1RFZcGZUxZjWx2TBtDGVllyfkrOUtowxY3i7IF931IZxB9GnMNHQU5hzGCGjoylD9il7CwP9nGHweV_YKccw0BHzJrhE-xApxliuw4w2-1LiJ7opXog_ZgTnQ-l2SDOOO4yQ54jpnJz0MCS8-Msl-Xi4f189Va9vj8-ru9fKilaoqhHS1lJY1ct1K6Fe962uwWojlGodq13vaoemVbpxBlCBkiBBI6IWhZFiSa5_e3cxfM6Ycjf6ZHEYYMIwp44rzRquhTQFvfqHbsMcp_JdoRplGil4Xajql_ryA-67XfQjxH3HWXeYvyi2O8zfvbytDim-AV3QfCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757954312</pqid></control><display><type>article</type><title>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</title><source>Wiley</source><creator>Anderson, Ashley N. ; Browning, Joshua M. ; Comeaux, Joey ; Hering, Amanda S. ; Nychka, Douglas</creator><creatorcontrib>Anderson, Ashley N. ; Browning, Joshua M. ; Comeaux, Joey ; Hering, Amanda S. ; Nychka, Douglas</creatorcontrib><description>ABSTRACT
This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.4327</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Automation ; Error correction & detection ; quality control ; radiosonde ; skewness ; temperature</subject><ispartof>International journal of climatology, 2016-01, Vol.36 (1), p.28-42</ispartof><rights>2015 Royal Meteorological Society</rights><rights>2016 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anderson, Ashley N.</creatorcontrib><creatorcontrib>Browning, Joshua M.</creatorcontrib><creatorcontrib>Comeaux, Joey</creatorcontrib><creatorcontrib>Hering, Amanda S.</creatorcontrib><creatorcontrib>Nychka, Douglas</creatorcontrib><title>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</title><title>International journal of climatology</title><description>ABSTRACT
This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station.</description><subject>Automation</subject><subject>Error correction & detection</subject><subject>quality control</subject><subject>radiosonde</subject><subject>skewness</subject><subject>temperature</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAURYMoOI6CPyHgxk01adImWcrgJ4IbXZc3ySuToW3GJEXm35tRV27e3ZxzeVxCLjm74YzVt9tgb6So1RFZcGZUxZjWx2TBtDGVllyfkrOUtowxY3i7IF931IZxB9GnMNHQU5hzGCGjoylD9il7CwP9nGHweV_YKccw0BHzJrhE-xApxliuw4w2-1LiJ7opXog_ZgTnQ-l2SDOOO4yQ54jpnJz0MCS8-Msl-Xi4f189Va9vj8-ru9fKilaoqhHS1lJY1ct1K6Fe962uwWojlGodq13vaoemVbpxBlCBkiBBI6IWhZFiSa5_e3cxfM6Ycjf6ZHEYYMIwp44rzRquhTQFvfqHbsMcp_JdoRplGil4Xajql_ryA-67XfQjxH3HWXeYvyi2O8zfvbytDim-AV3QfCA</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Anderson, Ashley N.</creator><creator>Browning, Joshua M.</creator><creator>Comeaux, Joey</creator><creator>Hering, Amanda S.</creator><creator>Nychka, Douglas</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201601</creationdate><title>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</title><author>Anderson, Ashley N. ; Browning, Joshua M. ; Comeaux, Joey ; Hering, Amanda S. ; Nychka, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automation</topic><topic>Error correction & detection</topic><topic>quality control</topic><topic>radiosonde</topic><topic>skewness</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Ashley N.</creatorcontrib><creatorcontrib>Browning, Joshua M.</creatorcontrib><creatorcontrib>Comeaux, Joey</creatorcontrib><creatorcontrib>Hering, Amanda S.</creatorcontrib><creatorcontrib>Nychka, Douglas</creatorcontrib><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Ashley N.</au><au>Browning, Joshua M.</au><au>Comeaux, Joey</au><au>Hering, Amanda S.</au><au>Nychka, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</atitle><jtitle>International journal of climatology</jtitle><date>2016-01</date><risdate>2016</risdate><volume>36</volume><issue>1</issue><spage>28</spage><epage>42</epage><pages>28-42</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>ABSTRACT
This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/joc.4327</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0899-8418 |
ispartof | International journal of climatology, 2016-01, Vol.36 (1), p.28-42 |
issn | 0899-8418 1097-0088 |
language | eng |
recordid | cdi_proquest_miscellaneous_1780518349 |
source | Wiley |
subjects | Automation Error correction & detection quality control radiosonde skewness temperature |
title | A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20automated%20statistical%20quality%20control%20methods%20for%20error%20detection%20in%20historical%20radiosonde%20temperatures&rft.jtitle=International%20journal%20of%20climatology&rft.au=Anderson,%20Ashley%20N.&rft.date=2016-01&rft.volume=36&rft.issue=1&rft.spage=28&rft.epage=42&rft.pages=28-42&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.4327&rft_dat=%3Cproquest_wiley%3E1780518349%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757954312&rft_id=info:pmid/&rfr_iscdi=true |