Loading…

A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures

ABSTRACT This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three...

Full description

Saved in:
Bibliographic Details
Published in:International journal of climatology 2016-01, Vol.36 (1), p.28-42
Main Authors: Anderson, Ashley N., Browning, Joshua M., Comeaux, Joey, Hering, Amanda S., Nychka, Douglas
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743
cites
container_end_page 42
container_issue 1
container_start_page 28
container_title International journal of climatology
container_volume 36
creator Anderson, Ashley N.
Browning, Joshua M.
Comeaux, Joey
Hering, Amanda S.
Nychka, Douglas
description ABSTRACT This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station.
doi_str_mv 10.1002/joc.4327
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1780518349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1780518349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743</originalsourceid><addsrcrecordid>eNpdkE1LxDAURYMoOI6CPyHgxk01adImWcrgJ4IbXZc3ySuToW3GJEXm35tRV27e3ZxzeVxCLjm74YzVt9tgb6So1RFZcGZUxZjWx2TBtDGVllyfkrOUtowxY3i7IF931IZxB9GnMNHQU5hzGCGjoylD9il7CwP9nGHweV_YKccw0BHzJrhE-xApxliuw4w2-1LiJ7opXog_ZgTnQ-l2SDOOO4yQ54jpnJz0MCS8-Msl-Xi4f189Va9vj8-ru9fKilaoqhHS1lJY1ct1K6Fe962uwWojlGodq13vaoemVbpxBlCBkiBBI6IWhZFiSa5_e3cxfM6Ycjf6ZHEYYMIwp44rzRquhTQFvfqHbsMcp_JdoRplGil4Xajql_ryA-67XfQjxH3HWXeYvyi2O8zfvbytDim-AV3QfCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757954312</pqid></control><display><type>article</type><title>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</title><source>Wiley</source><creator>Anderson, Ashley N. ; Browning, Joshua M. ; Comeaux, Joey ; Hering, Amanda S. ; Nychka, Douglas</creator><creatorcontrib>Anderson, Ashley N. ; Browning, Joshua M. ; Comeaux, Joey ; Hering, Amanda S. ; Nychka, Douglas</creatorcontrib><description>ABSTRACT This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station.</description><identifier>ISSN: 0899-8418</identifier><identifier>EISSN: 1097-0088</identifier><identifier>DOI: 10.1002/joc.4327</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Automation ; Error correction &amp; detection ; quality control ; radiosonde ; skewness ; temperature</subject><ispartof>International journal of climatology, 2016-01, Vol.36 (1), p.28-42</ispartof><rights>2015 Royal Meteorological Society</rights><rights>2016 Royal Meteorological Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Anderson, Ashley N.</creatorcontrib><creatorcontrib>Browning, Joshua M.</creatorcontrib><creatorcontrib>Comeaux, Joey</creatorcontrib><creatorcontrib>Hering, Amanda S.</creatorcontrib><creatorcontrib>Nychka, Douglas</creatorcontrib><title>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</title><title>International journal of climatology</title><description>ABSTRACT This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station.</description><subject>Automation</subject><subject>Error correction &amp; detection</subject><subject>quality control</subject><subject>radiosonde</subject><subject>skewness</subject><subject>temperature</subject><issn>0899-8418</issn><issn>1097-0088</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LxDAURYMoOI6CPyHgxk01adImWcrgJ4IbXZc3ySuToW3GJEXm35tRV27e3ZxzeVxCLjm74YzVt9tgb6So1RFZcGZUxZjWx2TBtDGVllyfkrOUtowxY3i7IF931IZxB9GnMNHQU5hzGCGjoylD9il7CwP9nGHweV_YKccw0BHzJrhE-xApxliuw4w2-1LiJ7opXog_ZgTnQ-l2SDOOO4yQ54jpnJz0MCS8-Msl-Xi4f189Va9vj8-ru9fKilaoqhHS1lJY1ct1K6Fe962uwWojlGodq13vaoemVbpxBlCBkiBBI6IWhZFiSa5_e3cxfM6Ycjf6ZHEYYMIwp44rzRquhTQFvfqHbsMcp_JdoRplGil4Xajql_ryA-67XfQjxH3HWXeYvyi2O8zfvbytDim-AV3QfCA</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Anderson, Ashley N.</creator><creator>Browning, Joshua M.</creator><creator>Comeaux, Joey</creator><creator>Hering, Amanda S.</creator><creator>Nychka, Douglas</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>7ST</scope><scope>7TV</scope><scope>7UA</scope><scope>C1K</scope><scope>SOI</scope></search><sort><creationdate>201601</creationdate><title>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</title><author>Anderson, Ashley N. ; Browning, Joshua M. ; Comeaux, Joey ; Hering, Amanda S. ; Nychka, Douglas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automation</topic><topic>Error correction &amp; detection</topic><topic>quality control</topic><topic>radiosonde</topic><topic>skewness</topic><topic>temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anderson, Ashley N.</creatorcontrib><creatorcontrib>Browning, Joshua M.</creatorcontrib><creatorcontrib>Comeaux, Joey</creatorcontrib><creatorcontrib>Hering, Amanda S.</creatorcontrib><creatorcontrib>Nychka, Douglas</creatorcontrib><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>International journal of climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anderson, Ashley N.</au><au>Browning, Joshua M.</au><au>Comeaux, Joey</au><au>Hering, Amanda S.</au><au>Nychka, Douglas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures</atitle><jtitle>International journal of climatology</jtitle><date>2016-01</date><risdate>2016</risdate><volume>36</volume><issue>1</issue><spage>28</spage><epage>42</epage><pages>28-42</pages><issn>0899-8418</issn><eissn>1097-0088</eissn><abstract>ABSTRACT This paper presents a comparison of statistical methods for automated random error detection in historic radiosonde temperatures through a rigorous simulation study. We simulate temperature data designed to mimic observed radiosonde temperature time series from ten climate regions and three pressure levels and contaminate this simulated data with errors that are similar to those occurring in the historical record. Robust estimates of centre and spread of the temperatures are used to standardize values and flag potentially erroneous observations, and five approaches for selecting subsets of observations upon which to base these estimates are tested. Two robust estimators, one of which is designed to work well for asymmetric distributions and gives different estimates of standard deviation for each tail of the distribution, are investigated. We use a logistic regression model to assess the effects of climate, pressure level, record length, contamination percentage, error type, and window size on each method combined with each estimator in terms of both correctly and incorrectly identified errors. Temperature distributions are not always symmetric, and based on the simulation, we find that the asymmetric estimator makes fewer mistakes in error identification, and we illustrate its application with a case study at a Russian station.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/joc.4327</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0899-8418
ispartof International journal of climatology, 2016-01, Vol.36 (1), p.28-42
issn 0899-8418
1097-0088
language eng
recordid cdi_proquest_miscellaneous_1780518349
source Wiley
subjects Automation
Error correction & detection
quality control
radiosonde
skewness
temperature
title A comparison of automated statistical quality control methods for error detection in historical radiosonde temperatures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A13%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20comparison%20of%20automated%20statistical%20quality%20control%20methods%20for%20error%20detection%20in%20historical%20radiosonde%20temperatures&rft.jtitle=International%20journal%20of%20climatology&rft.au=Anderson,%20Ashley%20N.&rft.date=2016-01&rft.volume=36&rft.issue=1&rft.spage=28&rft.epage=42&rft.pages=28-42&rft.issn=0899-8418&rft.eissn=1097-0088&rft_id=info:doi/10.1002/joc.4327&rft_dat=%3Cproquest_wiley%3E1780518349%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3637-534c243c7f4b64a2bf682ac893776d02dfd2de96785d9ae7a74a4a8eee8393743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757954312&rft_id=info:pmid/&rfr_iscdi=true