Loading…
The role of anterior midcingulate cortex in cognitive motor control
The rostral cingulate cortex has been associated with a multitude of cognitive control functions. Recent neuroimaging data suggest that the anterior midcingulate cortex (aMCC) has a key role for cognitive aspects of movement generation, i.e., intentional motor control. We here tested the functional...
Saved in:
Published in: | Human brain mapping 2014-06, Vol.35 (6), p.2741-2753 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2803-d1e35663bcca74f7319e46a877e52bc9ddf5be3fba1065f091537d2c360b867d3 |
---|---|
cites | |
container_end_page | 2753 |
container_issue | 6 |
container_start_page | 2741 |
container_title | Human brain mapping |
container_volume | 35 |
creator | Hoffstaedter, Felix Grefkes, Christian Caspers, Svenja Roski, Christian Palomero-Gallagher, Nicola Laird, Angie R. Fox, Peter T. Eickhoff, Simon B. |
description | The rostral cingulate cortex has been associated with a multitude of cognitive control functions. Recent neuroimaging data suggest that the anterior midcingulate cortex (aMCC) has a key role for cognitive aspects of movement generation, i.e., intentional motor control. We here tested the functional connectivity of this area using two complementary approaches: (1) resting‐state connectivity of the aMCC based on fMRI scans obtained in 100 subjects, and (2) functional connectivity in the context of explicit task conditions using meta‐analytic connectivity modeling (MACM) over 656 imaging experiment. Both approaches revealed a convergent functional network architecture of the aMCC with prefrontal, premotor and parietal cortices as well as anterior insula, area 44/45, cerebellum and dorsal striatum. To specifically test the role of the aMCC's task‐based functional connectivity in cognitive motor control, separate MACM analyses were conducted over “cognitive” and “action” related experimental paradigms. Both analyses confirmed the same task‐based connectivity pattern of the aMCC. While the “cognition” domain showed higher convergence of activity in supramodal association areas in prefrontal cortex and anterior insula, “action” related experiments yielded higher convergence in somatosensory and premotor areas. Secondly, to probe the functional specificity of the aMCC's convergent functional connectivity, it was compared with a neural network of intentional movement initiation. This exemplary comparison confirmed the involvement of the state independent FC network of the aMCC in the intentional generation of movements. In summary, the different experiments of the present study suggest that the aMCC constitute a key region in the network realizing intentional motor control. Hum Brain Mapp 35:2741–2753, 2014. © 2013 Wiley Periodicals, Inc. |
doi_str_mv | 10.1002/hbm.22363 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_miscellaneous_1780526051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3280326521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2803-d1e35663bcca74f7319e46a877e52bc9ddf5be3fba1065f091537d2c360b867d3</originalsourceid><addsrcrecordid>eNpdkD1PwzAURS0EEqUw8A8isbCk9bNrOxlpBS1S-RiKOlqO47QuSVycBOi_x20RA9O7wzlPVxeha8ADwJgM11k1IIRyeoJ6gFMRY0jp6T5zFqcjAefoomk2GAMwDD00WaxN5F1pIldEqm6Nt85Hlc21rVddqVoTaedb8x3ZOqRVbVv7aaLKtQHTrm6De4nOClU25ur39tHbw_1iMovnL9PHyd081iTBNM7BUMY5zbRWYlQICqkZcZUIYRjJdJrnBcsMLTK1L1vgFBgVOdGU4yzhIqd9dHv8u_XuozNNKyvbaFOWqjauaySIBDPCMYOA3vxDN67zdWgngQVOECFIoIZH6suWZie33lbK7yRgud9Shi3lYUs5Gz8dQjDio2GbsMmfofy75IIKJpfPUzl5nS0oLIUc0x_gjnbr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517872772</pqid></control><display><type>article</type><title>The role of anterior midcingulate cortex in cognitive motor control</title><source>PubMed Central</source><creator>Hoffstaedter, Felix ; Grefkes, Christian ; Caspers, Svenja ; Roski, Christian ; Palomero-Gallagher, Nicola ; Laird, Angie R. ; Fox, Peter T. ; Eickhoff, Simon B.</creator><creatorcontrib>Hoffstaedter, Felix ; Grefkes, Christian ; Caspers, Svenja ; Roski, Christian ; Palomero-Gallagher, Nicola ; Laird, Angie R. ; Fox, Peter T. ; Eickhoff, Simon B.</creatorcontrib><description>The rostral cingulate cortex has been associated with a multitude of cognitive control functions. Recent neuroimaging data suggest that the anterior midcingulate cortex (aMCC) has a key role for cognitive aspects of movement generation, i.e., intentional motor control. We here tested the functional connectivity of this area using two complementary approaches: (1) resting‐state connectivity of the aMCC based on fMRI scans obtained in 100 subjects, and (2) functional connectivity in the context of explicit task conditions using meta‐analytic connectivity modeling (MACM) over 656 imaging experiment. Both approaches revealed a convergent functional network architecture of the aMCC with prefrontal, premotor and parietal cortices as well as anterior insula, area 44/45, cerebellum and dorsal striatum. To specifically test the role of the aMCC's task‐based functional connectivity in cognitive motor control, separate MACM analyses were conducted over “cognitive” and “action” related experimental paradigms. Both analyses confirmed the same task‐based connectivity pattern of the aMCC. While the “cognition” domain showed higher convergence of activity in supramodal association areas in prefrontal cortex and anterior insula, “action” related experiments yielded higher convergence in somatosensory and premotor areas. Secondly, to probe the functional specificity of the aMCC's convergent functional connectivity, it was compared with a neural network of intentional movement initiation. This exemplary comparison confirmed the involvement of the state independent FC network of the aMCC in the intentional generation of movements. In summary, the different experiments of the present study suggest that the aMCC constitute a key region in the network realizing intentional motor control. Hum Brain Mapp 35:2741–2753, 2014. © 2013 Wiley Periodicals, Inc.</description><identifier>ISSN: 1065-9471</identifier><identifier>EISSN: 1097-0193</identifier><identifier>DOI: 10.1002/hbm.22363</identifier><language>eng</language><publisher>San Antonio: Blackwell Publishing Ltd</publisher><subject>anterior midcingulate cortex ; cognitive motor control ; fMRI ; meta-analytic connectivity modeling ; seed based resting-state analysis</subject><ispartof>Human brain mapping, 2014-06, Vol.35 (6), p.2741-2753</ispartof><rights>Copyright © 2013 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2803-d1e35663bcca74f7319e46a877e52bc9ddf5be3fba1065f091537d2c360b867d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Hoffstaedter, Felix</creatorcontrib><creatorcontrib>Grefkes, Christian</creatorcontrib><creatorcontrib>Caspers, Svenja</creatorcontrib><creatorcontrib>Roski, Christian</creatorcontrib><creatorcontrib>Palomero-Gallagher, Nicola</creatorcontrib><creatorcontrib>Laird, Angie R.</creatorcontrib><creatorcontrib>Fox, Peter T.</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><title>The role of anterior midcingulate cortex in cognitive motor control</title><title>Human brain mapping</title><addtitle>Hum. Brain Mapp</addtitle><description>The rostral cingulate cortex has been associated with a multitude of cognitive control functions. Recent neuroimaging data suggest that the anterior midcingulate cortex (aMCC) has a key role for cognitive aspects of movement generation, i.e., intentional motor control. We here tested the functional connectivity of this area using two complementary approaches: (1) resting‐state connectivity of the aMCC based on fMRI scans obtained in 100 subjects, and (2) functional connectivity in the context of explicit task conditions using meta‐analytic connectivity modeling (MACM) over 656 imaging experiment. Both approaches revealed a convergent functional network architecture of the aMCC with prefrontal, premotor and parietal cortices as well as anterior insula, area 44/45, cerebellum and dorsal striatum. To specifically test the role of the aMCC's task‐based functional connectivity in cognitive motor control, separate MACM analyses were conducted over “cognitive” and “action” related experimental paradigms. Both analyses confirmed the same task‐based connectivity pattern of the aMCC. While the “cognition” domain showed higher convergence of activity in supramodal association areas in prefrontal cortex and anterior insula, “action” related experiments yielded higher convergence in somatosensory and premotor areas. Secondly, to probe the functional specificity of the aMCC's convergent functional connectivity, it was compared with a neural network of intentional movement initiation. This exemplary comparison confirmed the involvement of the state independent FC network of the aMCC in the intentional generation of movements. In summary, the different experiments of the present study suggest that the aMCC constitute a key region in the network realizing intentional motor control. Hum Brain Mapp 35:2741–2753, 2014. © 2013 Wiley Periodicals, Inc.</description><subject>anterior midcingulate cortex</subject><subject>cognitive motor control</subject><subject>fMRI</subject><subject>meta-analytic connectivity modeling</subject><subject>seed based resting-state analysis</subject><issn>1065-9471</issn><issn>1097-0193</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpdkD1PwzAURS0EEqUw8A8isbCk9bNrOxlpBS1S-RiKOlqO47QuSVycBOi_x20RA9O7wzlPVxeha8ADwJgM11k1IIRyeoJ6gFMRY0jp6T5zFqcjAefoomk2GAMwDD00WaxN5F1pIldEqm6Nt85Hlc21rVddqVoTaedb8x3ZOqRVbVv7aaLKtQHTrm6De4nOClU25ur39tHbw_1iMovnL9PHyd081iTBNM7BUMY5zbRWYlQICqkZcZUIYRjJdJrnBcsMLTK1L1vgFBgVOdGU4yzhIqd9dHv8u_XuozNNKyvbaFOWqjauaySIBDPCMYOA3vxDN67zdWgngQVOECFIoIZH6suWZie33lbK7yRgud9Shi3lYUs5Gz8dQjDio2GbsMmfofy75IIKJpfPUzl5nS0oLIUc0x_gjnbr</recordid><startdate>201406</startdate><enddate>201406</enddate><creator>Hoffstaedter, Felix</creator><creator>Grefkes, Christian</creator><creator>Caspers, Svenja</creator><creator>Roski, Christian</creator><creator>Palomero-Gallagher, Nicola</creator><creator>Laird, Angie R.</creator><creator>Fox, Peter T.</creator><creator>Eickhoff, Simon B.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley & Sons, Inc</general><scope>BSCLL</scope><scope>7QR</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope></search><sort><creationdate>201406</creationdate><title>The role of anterior midcingulate cortex in cognitive motor control</title><author>Hoffstaedter, Felix ; Grefkes, Christian ; Caspers, Svenja ; Roski, Christian ; Palomero-Gallagher, Nicola ; Laird, Angie R. ; Fox, Peter T. ; Eickhoff, Simon B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2803-d1e35663bcca74f7319e46a877e52bc9ddf5be3fba1065f091537d2c360b867d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>anterior midcingulate cortex</topic><topic>cognitive motor control</topic><topic>fMRI</topic><topic>meta-analytic connectivity modeling</topic><topic>seed based resting-state analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hoffstaedter, Felix</creatorcontrib><creatorcontrib>Grefkes, Christian</creatorcontrib><creatorcontrib>Caspers, Svenja</creatorcontrib><creatorcontrib>Roski, Christian</creatorcontrib><creatorcontrib>Palomero-Gallagher, Nicola</creatorcontrib><creatorcontrib>Laird, Angie R.</creatorcontrib><creatorcontrib>Fox, Peter T.</creatorcontrib><creatorcontrib>Eickhoff, Simon B.</creatorcontrib><collection>Istex</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Human brain mapping</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hoffstaedter, Felix</au><au>Grefkes, Christian</au><au>Caspers, Svenja</au><au>Roski, Christian</au><au>Palomero-Gallagher, Nicola</au><au>Laird, Angie R.</au><au>Fox, Peter T.</au><au>Eickhoff, Simon B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of anterior midcingulate cortex in cognitive motor control</atitle><jtitle>Human brain mapping</jtitle><addtitle>Hum. Brain Mapp</addtitle><date>2014-06</date><risdate>2014</risdate><volume>35</volume><issue>6</issue><spage>2741</spage><epage>2753</epage><pages>2741-2753</pages><issn>1065-9471</issn><eissn>1097-0193</eissn><abstract>The rostral cingulate cortex has been associated with a multitude of cognitive control functions. Recent neuroimaging data suggest that the anterior midcingulate cortex (aMCC) has a key role for cognitive aspects of movement generation, i.e., intentional motor control. We here tested the functional connectivity of this area using two complementary approaches: (1) resting‐state connectivity of the aMCC based on fMRI scans obtained in 100 subjects, and (2) functional connectivity in the context of explicit task conditions using meta‐analytic connectivity modeling (MACM) over 656 imaging experiment. Both approaches revealed a convergent functional network architecture of the aMCC with prefrontal, premotor and parietal cortices as well as anterior insula, area 44/45, cerebellum and dorsal striatum. To specifically test the role of the aMCC's task‐based functional connectivity in cognitive motor control, separate MACM analyses were conducted over “cognitive” and “action” related experimental paradigms. Both analyses confirmed the same task‐based connectivity pattern of the aMCC. While the “cognition” domain showed higher convergence of activity in supramodal association areas in prefrontal cortex and anterior insula, “action” related experiments yielded higher convergence in somatosensory and premotor areas. Secondly, to probe the functional specificity of the aMCC's convergent functional connectivity, it was compared with a neural network of intentional movement initiation. This exemplary comparison confirmed the involvement of the state independent FC network of the aMCC in the intentional generation of movements. In summary, the different experiments of the present study suggest that the aMCC constitute a key region in the network realizing intentional motor control. Hum Brain Mapp 35:2741–2753, 2014. © 2013 Wiley Periodicals, Inc.</abstract><cop>San Antonio</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/hbm.22363</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1065-9471 |
ispartof | Human brain mapping, 2014-06, Vol.35 (6), p.2741-2753 |
issn | 1065-9471 1097-0193 |
language | eng |
recordid | cdi_proquest_miscellaneous_1780526051 |
source | PubMed Central |
subjects | anterior midcingulate cortex cognitive motor control fMRI meta-analytic connectivity modeling seed based resting-state analysis |
title | The role of anterior midcingulate cortex in cognitive motor control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T17%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20anterior%20midcingulate%20cortex%20in%20cognitive%20motor%20control&rft.jtitle=Human%20brain%20mapping&rft.au=Hoffstaedter,%20Felix&rft.date=2014-06&rft.volume=35&rft.issue=6&rft.spage=2741&rft.epage=2753&rft.pages=2741-2753&rft.issn=1065-9471&rft.eissn=1097-0193&rft_id=info:doi/10.1002/hbm.22363&rft_dat=%3Cproquest_wiley%3E3280326521%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2803-d1e35663bcca74f7319e46a877e52bc9ddf5be3fba1065f091537d2c360b867d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1517872772&rft_id=info:pmid/&rfr_iscdi=true |