Loading…

Crystal structures of halohydrin hydrogen-halide-lyases from Corynebacterium sp. N-1074

ABSTRACT Halohydrin hydrogen‐halide‐lyase (H‐Lyase) is a bacterial enzyme that is involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins to produce the corresponding epoxides. The epoxide...

Full description

Saved in:
Bibliographic Details
Published in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2015-12, Vol.83 (12), p.2230-2239
Main Authors: Watanabe, Fumiaki, Yu, Fujio, Ohtaki, Akashi, Yamanaka, Yasuaki, Noguchi, Keiichi, Yohda, Masafumi, Odaka, Masafumi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Halohydrin hydrogen‐halide‐lyase (H‐Lyase) is a bacterial enzyme that is involved in the degradation of halohydrins. This enzyme catalyzes the intramolecular nucleophilic displacement of a halogen by a vicinal hydroxyl group in halohydrins to produce the corresponding epoxides. The epoxide products are subsequently hydrolyzed by an epoxide hydrolase, yielding the corresponding 1, 2‐diol. Until now, six different H‐Lyases have been studied. These H‐Lyases are grouped into three subtypes (A, B, and C) based on amino acid sequence similarities and exhibit different enantioselectivity. Corynebacterium sp. strain N‐1074 has two different isozymes of H‐Lyase, HheA (A‐type) and HheB (B‐type). We have determined their crystal structures to elucidate the differences in enantioselectivity among them. All three groups share a similar structure, including catalytic sites. The lack of enantioselectivity of HheA seems to be due to the relatively wide size of the substrate tunnel compared to that of other H‐Lyases. Among the B‐type H‐Lyases, HheB shows relatively high enantioselectivity compared to that of HheBGP1. This difference seems to be due to amino acid replacements at the active site tunnel. The binding mode of 1, 3‐dicyano‐2‐propanol at the catalytic site in the crystal structure of the HheB‐DiCN complex suggests that the product should be (R)‐epichlorohydrin, which agrees with the enantioselectivity of HheB. Comparison with the structure of HheC provides a clue for the difference in their enantioselectivity. Proteins 2015; 83:2230–2239. © 2015 Wiley Periodicals, Inc.
ISSN:0887-3585
1097-0134
DOI:10.1002/prot.24938