Loading…

Inferring the age of a fixed beneficial allele

Estimating the age and strength of beneficial alleles is central to understanding how adaptation proceeds in response to changing environmental conditions. Several haplotype‐based estimators exist for inferring the age of segregating beneficial mutations. Here, we develop an approximate Bayesian‐bas...

Full description

Saved in:
Bibliographic Details
Published in:Molecular ecology 2016-01, Vol.25 (1), p.157-169
Main Authors: Ormond, Louise, Foll, Matthieu, Ewing, Gregory B, Pfeifer, Susanne P, Jensen, Jeffrey D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5188-8fac0535355d3b83a4aecefed8712a4504affdf9d699ff209baa7eb50f74b7223
cites cdi_FETCH-LOGICAL-c5188-8fac0535355d3b83a4aecefed8712a4504affdf9d699ff209baa7eb50f74b7223
container_end_page 169
container_issue 1
container_start_page 157
container_title Molecular ecology
container_volume 25
creator Ormond, Louise
Foll, Matthieu
Ewing, Gregory B
Pfeifer, Susanne P
Jensen, Jeffrey D
description Estimating the age and strength of beneficial alleles is central to understanding how adaptation proceeds in response to changing environmental conditions. Several haplotype‐based estimators exist for inferring the age of segregating beneficial mutations. Here, we develop an approximate Bayesian‐based approach that rather estimates these parameters for fixed beneficial mutations in single populations. We integrate a range of existing diversity, site frequency spectrum, haplotype‐ and linkage disequilibrium‐based summary statistics. We show that for strong selective sweeps on de novo mutations the method can estimate allele age and selection strength even in nonequilibrium demographic scenarios. We extend our approach to models of selection on standing variation, and co‐infer the frequency at which selection began to act upon the mutation. Finally, we apply our method to estimate the age and selection strength of a previously identified mutation underpinning cryptic colour adaptation in a wild deer mouse population, and compare our findings with previously published estimates as well as with geological data pertaining to the presumed shift in selective pressure.
doi_str_mv 10.1111/mec.13478
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1782212945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1782212945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5188-8fac0535355d3b83a4aecefed8712a4504affdf9d699ff209baa7eb50f74b7223</originalsourceid><addsrcrecordid>eNqN0E1vEzEQBmALFdG0cOgfKCtxaQ-b-tveI4pKKQpwKBWIizW7Ow5uN7vBTkTy73HZtgekSvUcfHnmleYl5IjRKcvvbInNlAlp7AsyYUKrklfyxx6Z0ErzklEr9slBSjeUMsGVekX2uVZGGyUnZHrZe4wx9Iti_QsLWGAx-AIKH7bYFjX26EMToCug67DD1-Slhy7hm_v_kFx_OP82-1jOv15czt7Py0Yxa0vroaFK5FGtqK0ACdigx9YaxkEqKsH71letrirvOa1qAIO1ot7I2nAuDsnJmLuKw-8NprVbhtRg10GPwyY5ZiznLJ-pnkGN1poZxTJ99x-9GTaxz4dkpaQWUkmR1emomjikFNG7VQxLiDvHqLvr2-W-3b--sz2-T9zUS2wf5UPBGZyN4E_ocPd0kvt8PnuILMeNkNa4fdyAeOu0EUa5718unFU_r-aV0O5T9m9H72FwsIghuesrTpmmlFZU5Kv-AqgWnuo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1754634543</pqid></control><display><type>article</type><title>Inferring the age of a fixed beneficial allele</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Ormond, Louise ; Foll, Matthieu ; Ewing, Gregory B ; Pfeifer, Susanne P ; Jensen, Jeffrey D</creator><creatorcontrib>Ormond, Louise ; Foll, Matthieu ; Ewing, Gregory B ; Pfeifer, Susanne P ; Jensen, Jeffrey D</creatorcontrib><description>Estimating the age and strength of beneficial alleles is central to understanding how adaptation proceeds in response to changing environmental conditions. Several haplotype‐based estimators exist for inferring the age of segregating beneficial mutations. Here, we develop an approximate Bayesian‐based approach that rather estimates these parameters for fixed beneficial mutations in single populations. We integrate a range of existing diversity, site frequency spectrum, haplotype‐ and linkage disequilibrium‐based summary statistics. We show that for strong selective sweeps on de novo mutations the method can estimate allele age and selection strength even in nonequilibrium demographic scenarios. We extend our approach to models of selection on standing variation, and co‐infer the frequency at which selection began to act upon the mutation. Finally, we apply our method to estimate the age and selection strength of a previously identified mutation underpinning cryptic colour adaptation in a wild deer mouse population, and compare our findings with previously published estimates as well as with geological data pertaining to the presumed shift in selective pressure.</description><identifier>ISSN: 0962-1083</identifier><identifier>EISSN: 1365-294X</identifier><identifier>DOI: 10.1111/mec.13478</identifier><identifier>PMID: 26576754</identifier><language>eng</language><publisher>England: Blackwell Scientific Publications</publisher><subject>adaptation ; Adaptation, Biological - genetics ; Age ; age determination ; Alleles ; Animals ; Bayes Theorem ; color ; Computer Simulation ; ecological genetics ; Environmental changes ; Environmental conditions ; environmental factors ; Gene Frequency ; Genetics, Population ; Hair ; Haplotypes ; Linkage Disequilibrium ; Mice - genetics ; Models, Genetic ; Mutation ; Pigmentation - genetics ; population genetics - empirical ; population genetics - theoretical ; statistics</subject><ispartof>Molecular ecology, 2016-01, Vol.25 (1), p.157-169</ispartof><rights>2015 John Wiley &amp; Sons Ltd</rights><rights>2015 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2016 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5188-8fac0535355d3b83a4aecefed8712a4504affdf9d699ff209baa7eb50f74b7223</citedby><cites>FETCH-LOGICAL-c5188-8fac0535355d3b83a4aecefed8712a4504affdf9d699ff209baa7eb50f74b7223</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26576754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ormond, Louise</creatorcontrib><creatorcontrib>Foll, Matthieu</creatorcontrib><creatorcontrib>Ewing, Gregory B</creatorcontrib><creatorcontrib>Pfeifer, Susanne P</creatorcontrib><creatorcontrib>Jensen, Jeffrey D</creatorcontrib><title>Inferring the age of a fixed beneficial allele</title><title>Molecular ecology</title><addtitle>Mol Ecol</addtitle><description>Estimating the age and strength of beneficial alleles is central to understanding how adaptation proceeds in response to changing environmental conditions. Several haplotype‐based estimators exist for inferring the age of segregating beneficial mutations. Here, we develop an approximate Bayesian‐based approach that rather estimates these parameters for fixed beneficial mutations in single populations. We integrate a range of existing diversity, site frequency spectrum, haplotype‐ and linkage disequilibrium‐based summary statistics. We show that for strong selective sweeps on de novo mutations the method can estimate allele age and selection strength even in nonequilibrium demographic scenarios. We extend our approach to models of selection on standing variation, and co‐infer the frequency at which selection began to act upon the mutation. Finally, we apply our method to estimate the age and selection strength of a previously identified mutation underpinning cryptic colour adaptation in a wild deer mouse population, and compare our findings with previously published estimates as well as with geological data pertaining to the presumed shift in selective pressure.</description><subject>adaptation</subject><subject>Adaptation, Biological - genetics</subject><subject>Age</subject><subject>age determination</subject><subject>Alleles</subject><subject>Animals</subject><subject>Bayes Theorem</subject><subject>color</subject><subject>Computer Simulation</subject><subject>ecological genetics</subject><subject>Environmental changes</subject><subject>Environmental conditions</subject><subject>environmental factors</subject><subject>Gene Frequency</subject><subject>Genetics, Population</subject><subject>Hair</subject><subject>Haplotypes</subject><subject>Linkage Disequilibrium</subject><subject>Mice - genetics</subject><subject>Models, Genetic</subject><subject>Mutation</subject><subject>Pigmentation - genetics</subject><subject>population genetics - empirical</subject><subject>population genetics - theoretical</subject><subject>statistics</subject><issn>0962-1083</issn><issn>1365-294X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0E1vEzEQBmALFdG0cOgfKCtxaQ-b-tveI4pKKQpwKBWIizW7Ow5uN7vBTkTy73HZtgekSvUcfHnmleYl5IjRKcvvbInNlAlp7AsyYUKrklfyxx6Z0ErzklEr9slBSjeUMsGVekX2uVZGGyUnZHrZe4wx9Iti_QsLWGAx-AIKH7bYFjX26EMToCug67DD1-Slhy7hm_v_kFx_OP82-1jOv15czt7Py0Yxa0vroaFK5FGtqK0ACdigx9YaxkEqKsH71letrirvOa1qAIO1ot7I2nAuDsnJmLuKw-8NprVbhtRg10GPwyY5ZiznLJ-pnkGN1poZxTJ99x-9GTaxz4dkpaQWUkmR1emomjikFNG7VQxLiDvHqLvr2-W-3b--sz2-T9zUS2wf5UPBGZyN4E_ocPd0kvt8PnuILMeNkNa4fdyAeOu0EUa5718unFU_r-aV0O5T9m9H72FwsIghuesrTpmmlFZU5Kv-AqgWnuo</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Ormond, Louise</creator><creator>Foll, Matthieu</creator><creator>Ewing, Gregory B</creator><creator>Pfeifer, Susanne P</creator><creator>Jensen, Jeffrey D</creator><general>Blackwell Scientific Publications</general><general>Blackwell Publishing Ltd</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>201601</creationdate><title>Inferring the age of a fixed beneficial allele</title><author>Ormond, Louise ; Foll, Matthieu ; Ewing, Gregory B ; Pfeifer, Susanne P ; Jensen, Jeffrey D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5188-8fac0535355d3b83a4aecefed8712a4504affdf9d699ff209baa7eb50f74b7223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>adaptation</topic><topic>Adaptation, Biological - genetics</topic><topic>Age</topic><topic>age determination</topic><topic>Alleles</topic><topic>Animals</topic><topic>Bayes Theorem</topic><topic>color</topic><topic>Computer Simulation</topic><topic>ecological genetics</topic><topic>Environmental changes</topic><topic>Environmental conditions</topic><topic>environmental factors</topic><topic>Gene Frequency</topic><topic>Genetics, Population</topic><topic>Hair</topic><topic>Haplotypes</topic><topic>Linkage Disequilibrium</topic><topic>Mice - genetics</topic><topic>Models, Genetic</topic><topic>Mutation</topic><topic>Pigmentation - genetics</topic><topic>population genetics - empirical</topic><topic>population genetics - theoretical</topic><topic>statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ormond, Louise</creatorcontrib><creatorcontrib>Foll, Matthieu</creatorcontrib><creatorcontrib>Ewing, Gregory B</creatorcontrib><creatorcontrib>Pfeifer, Susanne P</creatorcontrib><creatorcontrib>Jensen, Jeffrey D</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ormond, Louise</au><au>Foll, Matthieu</au><au>Ewing, Gregory B</au><au>Pfeifer, Susanne P</au><au>Jensen, Jeffrey D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inferring the age of a fixed beneficial allele</atitle><jtitle>Molecular ecology</jtitle><addtitle>Mol Ecol</addtitle><date>2016-01</date><risdate>2016</risdate><volume>25</volume><issue>1</issue><spage>157</spage><epage>169</epage><pages>157-169</pages><issn>0962-1083</issn><eissn>1365-294X</eissn><abstract>Estimating the age and strength of beneficial alleles is central to understanding how adaptation proceeds in response to changing environmental conditions. Several haplotype‐based estimators exist for inferring the age of segregating beneficial mutations. Here, we develop an approximate Bayesian‐based approach that rather estimates these parameters for fixed beneficial mutations in single populations. We integrate a range of existing diversity, site frequency spectrum, haplotype‐ and linkage disequilibrium‐based summary statistics. We show that for strong selective sweeps on de novo mutations the method can estimate allele age and selection strength even in nonequilibrium demographic scenarios. We extend our approach to models of selection on standing variation, and co‐infer the frequency at which selection began to act upon the mutation. Finally, we apply our method to estimate the age and selection strength of a previously identified mutation underpinning cryptic colour adaptation in a wild deer mouse population, and compare our findings with previously published estimates as well as with geological data pertaining to the presumed shift in selective pressure.</abstract><cop>England</cop><pub>Blackwell Scientific Publications</pub><pmid>26576754</pmid><doi>10.1111/mec.13478</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-1083
ispartof Molecular ecology, 2016-01, Vol.25 (1), p.157-169
issn 0962-1083
1365-294X
language eng
recordid cdi_proquest_miscellaneous_1782212945
source Wiley-Blackwell Read & Publish Collection
subjects adaptation
Adaptation, Biological - genetics
Age
age determination
Alleles
Animals
Bayes Theorem
color
Computer Simulation
ecological genetics
Environmental changes
Environmental conditions
environmental factors
Gene Frequency
Genetics, Population
Hair
Haplotypes
Linkage Disequilibrium
Mice - genetics
Models, Genetic
Mutation
Pigmentation - genetics
population genetics - empirical
population genetics - theoretical
statistics
title Inferring the age of a fixed beneficial allele
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inferring%20the%20age%20of%20a%20fixed%20beneficial%20allele&rft.jtitle=Molecular%20ecology&rft.au=Ormond,%20Louise&rft.date=2016-01&rft.volume=25&rft.issue=1&rft.spage=157&rft.epage=169&rft.pages=157-169&rft.issn=0962-1083&rft.eissn=1365-294X&rft_id=info:doi/10.1111/mec.13478&rft_dat=%3Cproquest_cross%3E1782212945%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5188-8fac0535355d3b83a4aecefed8712a4504affdf9d699ff209baa7eb50f74b7223%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1754634543&rft_id=info:pmid/26576754&rfr_iscdi=true