Loading…

Inotropic Stimulation Induces Cardiac Dysfunction in Transgenic Mice Expressing a Troponin T (I79N) Mutation Linked to Familial Hypertrophic Cardiomyopathy

The cardiac troponin T (TnT) I79N mutation has been linked to familial hypertrophic cardiomyopathy and a high incidence of sudden death, despite causing little or no cardiac hypertrophy. In skinned fibers, I79N increased myofilamental calcium sensitivity (Miller, T., Szczesna, D., Housmans, P. R., Z...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-03, Vol.276 (13), p.10039-10048
Main Authors: Knollmann, Björn C., Blatt, Stephen A., Horton, Kenneth, de Freitas, Fatima, Miller, Todd, Bell, Michael, Housmans, Philippe R., Weissman, Neil J., Morad, Martin, Potter, James D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cardiac troponin T (TnT) I79N mutation has been linked to familial hypertrophic cardiomyopathy and a high incidence of sudden death, despite causing little or no cardiac hypertrophy. In skinned fibers, I79N increased myofilamental calcium sensitivity (Miller, T., Szczesna, D., Housmans, P. R., Zhao, J., deFreitas, F., Gomes, A. V., Culbreath, L., McCue, J., Wang, Y., Xu, Y., Kerrick, W. G., and Potter, J. D. (2001)J. Biol. Chem. 276, 3743–3755). To further study the functional consequences of this mutation, we compared the cardiac performance of transgenic mice expressing either human TnT-I79N or human wild-type TnT. In isolated hearts, cardiac function was different depending on the Ca2+ concentration of the perfusate; systolic function was significantly increased in Tg-I79N hearts at 0.5 and 1 mmol/liter. At higher Ca2+ concentrations, systolic function was not different, but diastolic dysfunction became manifest as increased end-diastolic pressure and time to 90% relaxation.In vivo measurements by echocardiography and Doppler confirmed that base-line systolic function was significantly higher in Tg-I79N mice without evidence for diastolic dysfunction. Inotropic stimulation with isoproterenol resulted only in a modest contractile response but caused significant mortality in Tg-I79N mice. Doppler studies ruled out aortic outflow obstruction and were consistent with increased chamber stiffness. We conclude that in vivo, the increased myofilament Ca2+ sensitivity due to the I79N mutation enhances base-line contractility but leads to cardiac dysfunction during inotropic stimulation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M006745200