Loading…
Zebrafish Leucocyte tyrosine kinase controls iridophore establishment, proliferation and survival
Summary The zebrafish striped pattern results from the interplay among three pigment cell types; black melanophores, yellow xanthophores and silvery iridophores, making it a valuable model to study pattern formation in vivo. It has been suggested that iridophore proliferation, dispersal and cell sha...
Saved in:
Published in: | Pigment cell and melanoma research 2016-05, Vol.29 (3), p.284-296 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Summary
The zebrafish striped pattern results from the interplay among three pigment cell types; black melanophores, yellow xanthophores and silvery iridophores, making it a valuable model to study pattern formation in vivo. It has been suggested that iridophore proliferation, dispersal and cell shape transitions play an important role during stripe formation; however, the underlying molecular mechanisms remain poorly understood. Using gain‐ and loss‐of‐function alleles of leucocyte tyrosine kinase (ltk) and a pharmacological inhibitor approach, we show that Ltk specifically regulates iridophore establishment, proliferation and survival. Mutants in shady/ltk lack iridophores and display an abnormal body stripe pattern. Moonstone mutants, ltkmne, display ectopic iridophores, suggesting hyperactivity of the mutant Ltk. The dominant ltkmne allele carries a missense mutation in a conserved position of the kinase domain that highly correlates with neuroblastomas in mammals. Chimeric analysis suggests a novel physiological role of Ltk in the regulation of iridophore proliferation by homotypic competition. |
---|---|
ISSN: | 1755-1471 1755-148X |
DOI: | 10.1111/pcmr.12454 |