Loading…

Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase

Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromo...

Full description

Saved in:
Bibliographic Details
Published in:Vaccine 2015-11, Vol.33 (48), p.6930-6937
Main Authors: Paquet, Eric, Viktor, Herna L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3
container_end_page 6937
container_issue 48
container_start_page 6930
container_title Vaccine
container_volume 33
creator Paquet, Eric
Viktor, Herna L
description Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase.
doi_str_mv 10.1016/j.vaccine.2015.08.098
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785230377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X15012888</els_id><sourcerecordid>3912833141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi0EokvhEUCWuHBJsOM4cThQVRV_KlXiAEjcrIkzFl6cONjJon0FnhovuwWpFzhZHv--z5r5hpCnnJWc8eblttyBMW7CsmJclkyVrFP3yIarVhSV5Oo-2bCqqYuasy9n5FFKW8aYFLx7SM5ynQulqg35eZ3CiEt0BrzfUzftIDqYFgrTQHMppAVvH-EHRKQDJhPdvLgw0WDz1YY4Qu-RjmBiGINHs3qINK3RgsH0il7Os88evyVLoMtXpDsXwdMJ1wijm9wACR-TBxZ8wien85x8fvvm09X74ubDu-ury5vC1F23FLbqm8oaqWpsmZWNbM0gZd_UivW17JgwaA0TEmoBrVR5KmBs3w6c29YggDgnL46-cwzfV0yLHl0y6D1MGNakeatkJZho2_9A667hvO2ajD6_g27DGqfcSKZkNsuhiUzJI5UnlVJEq-foRoh7zZk-5Kq3-pSrPuSqmdK5g6x7dnJf-xGHP6rbIDNwcQQwT27nMOpkHE4GBxfRLHoI7p9fvL7jYHxOJkf_DfeY_najU6WZ_nhYrsNuccl4pZQSvwB_gs6d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753770163</pqid></control><display><type>article</type><title>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</title><source>ScienceDirect Freedom Collection</source><creator>Paquet, Eric ; Viktor, Herna L</creator><creatorcontrib>Paquet, Eric ; Viktor, Herna L</creatorcontrib><description>Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2015.08.098</identifier><identifier>PMID: 26413882</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Allergy and Immunology ; Allosteric ; Allosteric Regulation ; Chemical Phenomena ; Conflicts of interest ; Deformable ; Description ; Euclidean space ; Evolution ; Fractional ; Geometry ; Heat kernel ; Ligands ; Macromolecular surface ; Methods ; Mutation ; Neuraminidase ; Neuraminidase - chemistry ; Protein Conformation ; Structural analysis ; Surface Properties ; Viral Proteins - chemistry</subject><ispartof>Vaccine, 2015-11, Vol.33 (48), p.6930-6937</ispartof><rights>2015</rights><rights>Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 27, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3</cites><orcidid>0000-0003-1914-5077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26413882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paquet, Eric</creatorcontrib><creatorcontrib>Viktor, Herna L</creatorcontrib><title>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</title><title>Vaccine</title><addtitle>Vaccine</addtitle><description>Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase.</description><subject>Allergy and Immunology</subject><subject>Allosteric</subject><subject>Allosteric Regulation</subject><subject>Chemical Phenomena</subject><subject>Conflicts of interest</subject><subject>Deformable</subject><subject>Description</subject><subject>Euclidean space</subject><subject>Evolution</subject><subject>Fractional</subject><subject>Geometry</subject><subject>Heat kernel</subject><subject>Ligands</subject><subject>Macromolecular surface</subject><subject>Methods</subject><subject>Mutation</subject><subject>Neuraminidase</subject><subject>Neuraminidase - chemistry</subject><subject>Protein Conformation</subject><subject>Structural analysis</subject><subject>Surface Properties</subject><subject>Viral Proteins - chemistry</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks9u1DAQxi0EokvhEUCWuHBJsOM4cThQVRV_KlXiAEjcrIkzFl6cONjJon0FnhovuwWpFzhZHv--z5r5hpCnnJWc8eblttyBMW7CsmJclkyVrFP3yIarVhSV5Oo-2bCqqYuasy9n5FFKW8aYFLx7SM5ynQulqg35eZ3CiEt0BrzfUzftIDqYFgrTQHMppAVvH-EHRKQDJhPdvLgw0WDz1YY4Qu-RjmBiGINHs3qINK3RgsH0il7Os88evyVLoMtXpDsXwdMJ1wijm9wACR-TBxZ8wien85x8fvvm09X74ubDu-ury5vC1F23FLbqm8oaqWpsmZWNbM0gZd_UivW17JgwaA0TEmoBrVR5KmBs3w6c29YggDgnL46-cwzfV0yLHl0y6D1MGNakeatkJZho2_9A667hvO2ajD6_g27DGqfcSKZkNsuhiUzJI5UnlVJEq-foRoh7zZk-5Kq3-pSrPuSqmdK5g6x7dnJf-xGHP6rbIDNwcQQwT27nMOpkHE4GBxfRLHoI7p9fvL7jYHxOJkf_DfeY_najU6WZ_nhYrsNuccl4pZQSvwB_gs6d</recordid><startdate>20151127</startdate><enddate>20151127</enddate><creator>Paquet, Eric</creator><creator>Viktor, Herna L</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U2</scope><orcidid>https://orcid.org/0000-0003-1914-5077</orcidid></search><sort><creationdate>20151127</creationdate><title>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</title><author>Paquet, Eric ; Viktor, Herna L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergy and Immunology</topic><topic>Allosteric</topic><topic>Allosteric Regulation</topic><topic>Chemical Phenomena</topic><topic>Conflicts of interest</topic><topic>Deformable</topic><topic>Description</topic><topic>Euclidean space</topic><topic>Evolution</topic><topic>Fractional</topic><topic>Geometry</topic><topic>Heat kernel</topic><topic>Ligands</topic><topic>Macromolecular surface</topic><topic>Methods</topic><topic>Mutation</topic><topic>Neuraminidase</topic><topic>Neuraminidase - chemistry</topic><topic>Protein Conformation</topic><topic>Structural analysis</topic><topic>Surface Properties</topic><topic>Viral Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paquet, Eric</creatorcontrib><creatorcontrib>Viktor, Herna L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>ProQuest Nursing &amp; Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>ProQuest Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Safety Science and Risk</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paquet, Eric</au><au>Viktor, Herna L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</atitle><jtitle>Vaccine</jtitle><addtitle>Vaccine</addtitle><date>2015-11-27</date><risdate>2015</risdate><volume>33</volume><issue>48</issue><spage>6930</spage><epage>6937</epage><pages>6930-6937</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><abstract>Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26413882</pmid><doi>10.1016/j.vaccine.2015.08.098</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1914-5077</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0264-410X
ispartof Vaccine, 2015-11, Vol.33 (48), p.6930-6937
issn 0264-410X
1873-2518
language eng
recordid cdi_proquest_miscellaneous_1785230377
source ScienceDirect Freedom Collection
subjects Allergy and Immunology
Allosteric
Allosteric Regulation
Chemical Phenomena
Conflicts of interest
Deformable
Description
Euclidean space
Evolution
Fractional
Geometry
Heat kernel
Ligands
Macromolecular surface
Methods
Mutation
Neuraminidase
Neuraminidase - chemistry
Protein Conformation
Structural analysis
Surface Properties
Viral Proteins - chemistry
title Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isometrically%20invariant%20and%20allosterically%20aware%20description%20of%20deformable%20macromolecular%20surfaces:%20Application%20to%20the%20viral%20neuraminidase&rft.jtitle=Vaccine&rft.au=Paquet,%20Eric&rft.date=2015-11-27&rft.volume=33&rft.issue=48&rft.spage=6930&rft.epage=6937&rft.pages=6930-6937&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2015.08.098&rft_dat=%3Cproquest_cross%3E3912833141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753770163&rft_id=info:pmid/26413882&rfr_iscdi=true