Loading…
Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase
Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromo...
Saved in:
Published in: | Vaccine 2015-11, Vol.33 (48), p.6930-6937 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3 |
container_end_page | 6937 |
container_issue | 48 |
container_start_page | 6930 |
container_title | Vaccine |
container_volume | 33 |
creator | Paquet, Eric Viktor, Herna L |
description | Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase. |
doi_str_mv | 10.1016/j.vaccine.2015.08.098 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1785230377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0264410X15012888</els_id><sourcerecordid>3912833141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxi0EokvhEUCWuHBJsOM4cThQVRV_KlXiAEjcrIkzFl6cONjJon0FnhovuwWpFzhZHv--z5r5hpCnnJWc8eblttyBMW7CsmJclkyVrFP3yIarVhSV5Oo-2bCqqYuasy9n5FFKW8aYFLx7SM5ynQulqg35eZ3CiEt0BrzfUzftIDqYFgrTQHMppAVvH-EHRKQDJhPdvLgw0WDz1YY4Qu-RjmBiGINHs3qINK3RgsH0il7Os88evyVLoMtXpDsXwdMJ1wijm9wACR-TBxZ8wien85x8fvvm09X74ubDu-ury5vC1F23FLbqm8oaqWpsmZWNbM0gZd_UivW17JgwaA0TEmoBrVR5KmBs3w6c29YggDgnL46-cwzfV0yLHl0y6D1MGNakeatkJZho2_9A667hvO2ajD6_g27DGqfcSKZkNsuhiUzJI5UnlVJEq-foRoh7zZk-5Kq3-pSrPuSqmdK5g6x7dnJf-xGHP6rbIDNwcQQwT27nMOpkHE4GBxfRLHoI7p9fvL7jYHxOJkf_DfeY_najU6WZ_nhYrsNuccl4pZQSvwB_gs6d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753770163</pqid></control><display><type>article</type><title>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</title><source>ScienceDirect Freedom Collection</source><creator>Paquet, Eric ; Viktor, Herna L</creator><creatorcontrib>Paquet, Eric ; Viktor, Herna L</creatorcontrib><description>Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase.</description><identifier>ISSN: 0264-410X</identifier><identifier>EISSN: 1873-2518</identifier><identifier>DOI: 10.1016/j.vaccine.2015.08.098</identifier><identifier>PMID: 26413882</identifier><language>eng</language><publisher>Netherlands: Elsevier Ltd</publisher><subject>Allergy and Immunology ; Allosteric ; Allosteric Regulation ; Chemical Phenomena ; Conflicts of interest ; Deformable ; Description ; Euclidean space ; Evolution ; Fractional ; Geometry ; Heat kernel ; Ligands ; Macromolecular surface ; Methods ; Mutation ; Neuraminidase ; Neuraminidase - chemistry ; Protein Conformation ; Structural analysis ; Surface Properties ; Viral Proteins - chemistry</subject><ispartof>Vaccine, 2015-11, Vol.33 (48), p.6930-6937</ispartof><rights>2015</rights><rights>Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.</rights><rights>Copyright Elsevier Limited Nov 27, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3</cites><orcidid>0000-0003-1914-5077</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26413882$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paquet, Eric</creatorcontrib><creatorcontrib>Viktor, Herna L</creatorcontrib><title>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</title><title>Vaccine</title><addtitle>Vaccine</addtitle><description>Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase.</description><subject>Allergy and Immunology</subject><subject>Allosteric</subject><subject>Allosteric Regulation</subject><subject>Chemical Phenomena</subject><subject>Conflicts of interest</subject><subject>Deformable</subject><subject>Description</subject><subject>Euclidean space</subject><subject>Evolution</subject><subject>Fractional</subject><subject>Geometry</subject><subject>Heat kernel</subject><subject>Ligands</subject><subject>Macromolecular surface</subject><subject>Methods</subject><subject>Mutation</subject><subject>Neuraminidase</subject><subject>Neuraminidase - chemistry</subject><subject>Protein Conformation</subject><subject>Structural analysis</subject><subject>Surface Properties</subject><subject>Viral Proteins - chemistry</subject><issn>0264-410X</issn><issn>1873-2518</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNks9u1DAQxi0EokvhEUCWuHBJsOM4cThQVRV_KlXiAEjcrIkzFl6cONjJon0FnhovuwWpFzhZHv--z5r5hpCnnJWc8eblttyBMW7CsmJclkyVrFP3yIarVhSV5Oo-2bCqqYuasy9n5FFKW8aYFLx7SM5ynQulqg35eZ3CiEt0BrzfUzftIDqYFgrTQHMppAVvH-EHRKQDJhPdvLgw0WDz1YY4Qu-RjmBiGINHs3qINK3RgsH0il7Os88evyVLoMtXpDsXwdMJ1wijm9wACR-TBxZ8wien85x8fvvm09X74ubDu-ury5vC1F23FLbqm8oaqWpsmZWNbM0gZd_UivW17JgwaA0TEmoBrVR5KmBs3w6c29YggDgnL46-cwzfV0yLHl0y6D1MGNakeatkJZho2_9A667hvO2ajD6_g27DGqfcSKZkNsuhiUzJI5UnlVJEq-foRoh7zZk-5Kq3-pSrPuSqmdK5g6x7dnJf-xGHP6rbIDNwcQQwT27nMOpkHE4GBxfRLHoI7p9fvL7jYHxOJkf_DfeY_najU6WZ_nhYrsNuccl4pZQSvwB_gs6d</recordid><startdate>20151127</startdate><enddate>20151127</enddate><creator>Paquet, Eric</creator><creator>Viktor, Herna L</creator><general>Elsevier Ltd</general><general>Elsevier Limited</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7RV</scope><scope>7T2</scope><scope>7T5</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U2</scope><orcidid>https://orcid.org/0000-0003-1914-5077</orcidid></search><sort><creationdate>20151127</creationdate><title>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</title><author>Paquet, Eric ; Viktor, Herna L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Allergy and Immunology</topic><topic>Allosteric</topic><topic>Allosteric Regulation</topic><topic>Chemical Phenomena</topic><topic>Conflicts of interest</topic><topic>Deformable</topic><topic>Description</topic><topic>Euclidean space</topic><topic>Evolution</topic><topic>Fractional</topic><topic>Geometry</topic><topic>Heat kernel</topic><topic>Ligands</topic><topic>Macromolecular surface</topic><topic>Methods</topic><topic>Mutation</topic><topic>Neuraminidase</topic><topic>Neuraminidase - chemistry</topic><topic>Protein Conformation</topic><topic>Structural analysis</topic><topic>Surface Properties</topic><topic>Viral Proteins - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paquet, Eric</creatorcontrib><creatorcontrib>Viktor, Herna L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>ProQuest Nursing & Allied Health Database</collection><collection>Health and Safety Science Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Biological Sciences</collection><collection>ProQuest Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Safety Science and Risk</collection><jtitle>Vaccine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paquet, Eric</au><au>Viktor, Herna L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase</atitle><jtitle>Vaccine</jtitle><addtitle>Vaccine</addtitle><date>2015-11-27</date><risdate>2015</risdate><volume>33</volume><issue>48</issue><spage>6930</spage><epage>6937</epage><pages>6930-6937</pages><issn>0264-410X</issn><eissn>1873-2518</eissn><abstract>Abstract Motivation: The macromolecular surfaces associated with proteins and macromolecules play a key role in determining their functionality and interactions, and are also of importance in structural analysis and classification. As a result of their interaction with their environment, the macromolecular surfaces experience random conformational deformations. Consequently, a realistic description of the molecular surface must be invariant under these deformations. Further, the motion associated with disconnected regions on the molecular surface may be correlated. This property is known as the allosteric effect. In this paper, we address these two requirements. To this end, we propose an approach based on discrete differential geometry and the fractional Fokker–Planck equation which provides an isometrically invariant and allosteric aware description of macromolecular surfaces. Our method is applied to the influenza neuraminidase.</abstract><cop>Netherlands</cop><pub>Elsevier Ltd</pub><pmid>26413882</pmid><doi>10.1016/j.vaccine.2015.08.098</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1914-5077</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0264-410X |
ispartof | Vaccine, 2015-11, Vol.33 (48), p.6930-6937 |
issn | 0264-410X 1873-2518 |
language | eng |
recordid | cdi_proquest_miscellaneous_1785230377 |
source | ScienceDirect Freedom Collection |
subjects | Allergy and Immunology Allosteric Allosteric Regulation Chemical Phenomena Conflicts of interest Deformable Description Euclidean space Evolution Fractional Geometry Heat kernel Ligands Macromolecular surface Methods Mutation Neuraminidase Neuraminidase - chemistry Protein Conformation Structural analysis Surface Properties Viral Proteins - chemistry |
title | Isometrically invariant and allosterically aware description of deformable macromolecular surfaces: Application to the viral neuraminidase |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T23%3A10%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isometrically%20invariant%20and%20allosterically%20aware%20description%20of%20deformable%20macromolecular%20surfaces:%20Application%20to%20the%20viral%20neuraminidase&rft.jtitle=Vaccine&rft.au=Paquet,%20Eric&rft.date=2015-11-27&rft.volume=33&rft.issue=48&rft.spage=6930&rft.epage=6937&rft.pages=6930-6937&rft.issn=0264-410X&rft.eissn=1873-2518&rft_id=info:doi/10.1016/j.vaccine.2015.08.098&rft_dat=%3Cproquest_cross%3E3912833141%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c499t-f2b62fc584e70f5657cd55b6480b45903cefc035a43a758098acfb7d11f7ceaa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753770163&rft_id=info:pmid/26413882&rfr_iscdi=true |