Loading…

Retinal heat shock protein 25 in early experimental diabetes

Diabetic retinopathy is the leading cause of blindness in adults, and oxidative stress has been pathogenically associated with retinal neurodegeneration. Cellular stresses induce expression of heat shock proteins (HSPs) and this results in cytoprotection. Our aim was to assess retinal expression of...

Full description

Saved in:
Bibliographic Details
Published in:Acta diabetologica 2013-08, Vol.50 (4), p.579-585
Main Authors: Pinach, Silvia, Burt, Davina, Berrone, Elena, Barutta, Federica, Bruno, Graziella, Porta, Massimo, Perin, Paolo Cavallo, Gruden, Gabriella
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Diabetic retinopathy is the leading cause of blindness in adults, and oxidative stress has been pathogenically associated with retinal neurodegeneration. Cellular stresses induce expression of heat shock proteins (HSPs) and this results in cytoprotection. Our aim was to assess retinal expression of HSP25 in early experimental diabetes. Mice were rendered diabetic by streptozotocin injection. Ten weeks after diabetes onset retinal HSP25 expression were studied by real-time PCR, immunoblotting and immunohistochemistry (IHC). Expression of nitrotyrosine and Cu/Zn superoxide dismutase (SOD), was assessed by IHC and apoptosis by TUNEL. Retinal HSP25 mRNA and protein expression was significantly increased in diabetic as compared to non-diabetic animals and localised predominantly within the retinal ganglion cells (RGC) layer. This was paralleled overexpression of nitrotyrosine and SOD and enhanced apoptosis. In early experimental diabetes, HSP25 is overexpressed in the RGC layer in parallel with markers of oxidative stress and apoptosis.
ISSN:0940-5429
1432-5233
DOI:10.1007/s00592-011-0346-1