Loading…
Lightweight aerial vehicles for monitoring, assessment and mapping of radiation anomalies
The Fukushima Daiichi nuclear power plant (FDNPP) incident released a significant mass of radioactive material into the atmosphere. An estimated 22% of this material fell out over land following the incident. Immediately following the disaster, there was a severe lack of information not only pertain...
Saved in:
Published in: | Journal of environmental radioactivity 2014-10, Vol.136, p.127-130 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Fukushima Daiichi nuclear power plant (FDNPP) incident released a significant mass of radioactive material into the atmosphere. An estimated 22% of this material fell out over land following the incident. Immediately following the disaster, there was a severe lack of information not only pertaining to the identity of the radioactive material released, but also its distribution as fallout in the surrounding regions. Indeed, emergency aid groups including the UN did not have sufficient location specific radiation data to accurately assign exclusion and evacuation zones surrounding the plant in the days and weeks following the incident. A newly developed instrument to provide rapid and high spatial resolution assessment of radionuclide contamination in the environment is presented. The device consists of a low cost, lightweight, unmanned aerial platform with a microcontroller and integrated gamma spectrometer, GPS and LIDAR. We demonstrate that with this instrument it is possible to rapidly and remotely detect ground-based radiation anomalies with a high spatial resolution ( |
---|---|
ISSN: | 0265-931X 1879-1700 |
DOI: | 10.1016/j.jenvrad.2014.05.008 |