Loading…
The interaction between hydrology and geomorphology in a landscape simulator experiment
An experimental landscape simulator has been developed which uses a rainfall simulator to create overland flow and erosion. The simulator uses rainfall sprinklers that eliminate rainsplash and an artificial soil which has little cohesion. Experimental landscapes developed in the simulator evolved ac...
Saved in:
Published in: | Hydrological processes 2001-01, Vol.15 (1), p.115-133 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An experimental landscape simulator has been developed which uses a rainfall simulator to create overland flow and erosion. The simulator uses rainfall sprinklers that eliminate rainsplash and an artificial soil which has little cohesion. Experimental landscapes developed in the simulator evolved according to Howard's headward growth model. Elements of Glock's model could be identified during evolution (i.e. initiation and maximum extension), but other stages of this model were not observed (i.e. extension and integration). The Horton concept of cross‐grading and micropiracy and stream piracy was not observed despite the dominance of overland flow, nor the groundwater headward growth mechanism proposed by Dunne, the latter due to experimental design, which eliminated any perched groundwater table. The experimental apparatus produced model landscapes that are scaled‐down analogues of real world processes. Copyright © 2001 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0885-6087 1099-1085 |
DOI: | 10.1002/hyp.143 |