Loading…
Assessment of mandibular posterior regional landmarks using cone-beam computed tomography in dental implant surgery
The aim of this study has been to evaluate and correlate the anatomical features of the posterior mandibular region (submandibular fossa depth, bone height and thickness, and mandibular canal corticalization) to improve accident prevention and allow safe planning in implantology. Four parasagittal s...
Saved in:
Published in: | Annals of anatomy 2016-05, Vol.205, p.53-59 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The aim of this study has been to evaluate and correlate the anatomical features of the posterior mandibular region (submandibular fossa depth, bone height and thickness, and mandibular canal corticalization) to improve accident prevention and allow safe planning in implantology. Four parasagittal sections of cone-beam computed tomography (CBCT) from 100 patients were bilaterally analyzed. Linear measurements of the submandibular fossa depth, bone height and thickness were performed. The submandibular fossa was also classified into non-influential undercuts and influential undercuts for implant placement. Mandibular canal corticalization was also evaluated and classified according to the visualization. Data on patient age and gender were also collected. Forty-one scans (41%) were from male patients, and 59 (59%) were from female patients. Patient age ranged between 18 and 84 years, with an average age of 51.37 years. The submandibular fossa depth and implant bone thickness had a significant effect on the variability of the sample (46.1% and 22.3%, respectively). The submandibular fossa depth was quite variable, and the highest values were observed in the posterior regions. In 18.27% of the cases, the presence of the fossa directly influenced implant placement, considering a bone height of 10mm (standard implant). A significant correlation was observed between fossa depth and bone thickness. Thus, greater attention should be paid to thick ridges; although thick ridges are favorable, they may be associated with deeper submandibular fossae. The mandibular canal was the most influential anatomical structure in the premolar region due to the reduced bone height in this region and the greater difficulty in viewing the canal, and the submandibular fossa was the most influential structure in the molar region due to lower bone height leading up to the fossa and the greater fossa depth in this region. Therefore, CBCT is an important tool for assessing the mandibular region and planning for safe implant installation in the posterior mandible. Furthermore, comprehensive evaluation of the characteristics of this region is necessary, as the variables – submandibular fossa depth, bone height and thickness, and mandibular canal corticalization – are related and must be considered together when planning. |
---|---|
ISSN: | 0940-9602 1618-0402 |
DOI: | 10.1016/j.aanat.2016.01.006 |