Loading…

DNA mismatch repair proteins promote apoptosis and suppress tumorigenesis in response to UVB irradiation: an in vivo study

DNA mismatch repair (MMR) proteins are integral to the maintenance of genomic stability and suppression of tumorigenesis due to their role in repair of post-replicative DNA errors. Recent data also support a role for MMR proteins in cellular responses to exogenous DNA damage that does not involve re...

Full description

Saved in:
Bibliographic Details
Published in:Carcinogenesis (New York) 2004-10, Vol.25 (10), p.1821-1827
Main Authors: Young, Leah C., Thulien, Kyle J., Campbell, Marcia R., Tron, Victor A., Andrew, Susan E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:DNA mismatch repair (MMR) proteins are integral to the maintenance of genomic stability and suppression of tumorigenesis due to their role in repair of post-replicative DNA errors. Recent data also support a role for MMR proteins in cellular responses to exogenous DNA damage that does not involve removal of DNA adducts. We have demonstrated previously that both Msh2- and Msh6-null primary mouse embryonic fibroblasts are significantly less sensitive to UVB (ultraviolet B)-induced cytotoxicity and apoptosis than wild-type control cells. In order to ascertain the physiological relevance of the data we have exposed MMR-deficient mice to acute and chronic UVB radiation. We found that MMR-deficiency was associated with reduced levels of apoptosis and increased residual UVB-induced DNA adducts in the epidermis 24-h following acute UVB exposure. Moreover, Msh2-null mice developed UVB-induced skin tumors at a lower level of cumulative UVB exposure and with a greater severity of onset than wild-type mice. The Msh2-null skin tumors did not display microsatellite instability, suggesting that these tumors develop via a different tumorigenic pathway than tumors that develop spontaneously. Therefore, we propose that dysfunctional MMR promotes UVB-induced tumorigenesis through reduced apoptotic elimination of damaged epidermal cells.
ISSN:0143-3334
1460-2180
1460-2180
DOI:10.1093/carcin/bgh191