Loading…
Toughness behavior in roll-bonded laminates based on AA6061/SiCp composites
Lamination has been shown to enhance damage tolerance of discontinuously reinforced aluminum (DRA) composites. Doing this technique, DRA layers could be laminated with ductile interlayers. In this research, two types of laminates consisting similar DRA layers and a ductile AA1050 interlayer were fab...
Saved in:
Published in: | Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2014-03, Vol.598, p.162-173 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Lamination has been shown to enhance damage tolerance of discontinuously reinforced aluminum (DRA) composites. Doing this technique, DRA layers could be laminated with ductile interlayers. In this research, two types of laminates consisting similar DRA layers and a ductile AA1050 interlayer were fabricated by means of hot roll-bonding. AA6061-5vol% SiCp and AA6061-15vol% SiCp composites were considered as exterior layers. Different rolling strains, was applied to control the interfacial strength which was examined by shear test. Toughness behavior of laminates was evaluated by three-point bending test in crack-divider orientation. Based on obtained results, the plastic deformation of ductile interlayer and delamination are challenging toughening mechanisms which were influenced by the degree of interfacial bonding and ceramic particle content. An increment in reinforcement content alters the toughness behavior of laminates in the way that the governing mechanism in laminates containing 5vol% SiCp is interfacial adhesion since in laminates having 15vol% SiCp the dominant mechanism is AA1050 deformability. Meanwhile, optical and scanning electron microscopy observations proved the importance of toughening mechanisms in each type of materials. Also, shear test results revealed that the interfacial strength of laminates increases by the number of rolling passes and deteriorated by higher reinforcement contents. |
---|---|
ISSN: | 0921-5093 1873-4936 |
DOI: | 10.1016/j.msea.2014.01.014 |