Loading…

Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood

Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2016-03, Vol.77, p.656-665
Main Authors: Akhtar, Naeem, El-Safty, Sherif A., Abdelsalam, Mamdouh E., Shenashen, Mohamed A., Kawarada, Hiroshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43
cites cdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43
container_end_page 665
container_issue
container_start_page 656
container_title Biosensors & bioelectronics
container_volume 77
creator Akhtar, Naeem
El-Safty, Sherif A.
Abdelsalam, Mamdouh E.
Shenashen, Mohamed A.
Kawarada, Hiroshi
description Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood). •A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability.
doi_str_mv 10.1016/j.bios.2015.10.023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786150567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566315304875</els_id><sourcerecordid>1785234098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</originalsourceid><addsrcrecordid>eNqNkcFKJDEURcOgjG3P_IALydJNtUkqSaXAjYgzCg2CzqxDKnklaVKJJtWCf2-aVpfiKnBz3oX3DkInlKwoofJ8sxp8KitGqKjBirD2B1pQ1bUNZ604QAvSC9kIKdsjdFzKhhDS0Z78REdM8l4y2i_Qw71x3oTwilP2EGdwOJqYypxNdBgC2DknBwXPCQ-p5vgxbG0qgAvE4uMj9hFPZppM8CbiIaTkfqHD0YQCv9_fJfr_5_rf1U2zvvt7e3W5bixXam74SCwXYjRM2XHgpu5ERW8HYwc3EKFg5NSMnRSdVNZwwTpoTcVF_Wfc8naJzva9Tzk9b6HMevLFQggmQtoWTTslqSBCdt9BBWs56dU3UC5Vx0i98RKxPWpzKiXDqJ-yn0x-1ZTonSK90TtFeqdol1VFdej0vX87TOA-Rz6cVOBiD0C93YuHrIutaiw4n6sO7ZL_qv8NmBCi2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746872042</pqid></control><display><type>article</type><title>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</title><source>ScienceDirect Journals</source><creator>Akhtar, Naeem ; El-Safty, Sherif A. ; Abdelsalam, Mamdouh E. ; Shenashen, Mohamed A. ; Kawarada, Hiroshi</creator><creatorcontrib>Akhtar, Naeem ; El-Safty, Sherif A. ; Abdelsalam, Mamdouh E. ; Shenashen, Mohamed A. ; Kawarada, Hiroshi</creatorcontrib><description>Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood). •A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2015.10.023</identifier><identifier>PMID: 26496219</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Animals ; Blood ; Blood Glucose - analysis ; Conductometry - instrumentation ; Detection ; Electric Conductivity ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Foams ; Glucose ; Humans ; Immunoassay - instrumentation ; Mammalian blood ; Microelectrodes ; Nanostrands ; Nanostructure ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Nickel - chemistry ; Reproducibility of Results ; Sensing ; Sensitivity and Specificity ; Sensors ; Three dimensional</subject><ispartof>Biosensors &amp; bioelectronics, 2016-03, Vol.77, p.656-665</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</citedby><cites>FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26496219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhtar, Naeem</creatorcontrib><creatorcontrib>El-Safty, Sherif A.</creatorcontrib><creatorcontrib>Abdelsalam, Mamdouh E.</creatorcontrib><creatorcontrib>Shenashen, Mohamed A.</creatorcontrib><creatorcontrib>Kawarada, Hiroshi</creatorcontrib><title>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</title><title>Biosensors &amp; bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood). •A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability.</description><subject>Animals</subject><subject>Blood</subject><subject>Blood Glucose - analysis</subject><subject>Conductometry - instrumentation</subject><subject>Detection</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Foams</subject><subject>Glucose</subject><subject>Humans</subject><subject>Immunoassay - instrumentation</subject><subject>Mammalian blood</subject><subject>Microelectrodes</subject><subject>Nanostrands</subject><subject>Nanostructure</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Nickel - chemistry</subject><subject>Reproducibility of Results</subject><subject>Sensing</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Three dimensional</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFKJDEURcOgjG3P_IALydJNtUkqSaXAjYgzCg2CzqxDKnklaVKJJtWCf2-aVpfiKnBz3oX3DkInlKwoofJ8sxp8KitGqKjBirD2B1pQ1bUNZ604QAvSC9kIKdsjdFzKhhDS0Z78REdM8l4y2i_Qw71x3oTwilP2EGdwOJqYypxNdBgC2DknBwXPCQ-p5vgxbG0qgAvE4uMj9hFPZppM8CbiIaTkfqHD0YQCv9_fJfr_5_rf1U2zvvt7e3W5bixXam74SCwXYjRM2XHgpu5ERW8HYwc3EKFg5NSMnRSdVNZwwTpoTcVF_Wfc8naJzva9Tzk9b6HMevLFQggmQtoWTTslqSBCdt9BBWs56dU3UC5Vx0i98RKxPWpzKiXDqJ-yn0x-1ZTonSK90TtFeqdol1VFdej0vX87TOA-Rz6cVOBiD0C93YuHrIutaiw4n6sO7ZL_qv8NmBCi2A</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Akhtar, Naeem</creator><creator>El-Safty, Sherif A.</creator><creator>Abdelsalam, Mamdouh E.</creator><creator>Shenashen, Mohamed A.</creator><creator>Kawarada, Hiroshi</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160315</creationdate><title>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</title><author>Akhtar, Naeem ; El-Safty, Sherif A. ; Abdelsalam, Mamdouh E. ; Shenashen, Mohamed A. ; Kawarada, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Blood Glucose - analysis</topic><topic>Conductometry - instrumentation</topic><topic>Detection</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Foams</topic><topic>Glucose</topic><topic>Humans</topic><topic>Immunoassay - instrumentation</topic><topic>Mammalian blood</topic><topic>Microelectrodes</topic><topic>Nanostrands</topic><topic>Nanostructure</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Nickel - chemistry</topic><topic>Reproducibility of Results</topic><topic>Sensing</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhtar, Naeem</creatorcontrib><creatorcontrib>El-Safty, Sherif A.</creatorcontrib><creatorcontrib>Abdelsalam, Mamdouh E.</creatorcontrib><creatorcontrib>Shenashen, Mohamed A.</creatorcontrib><creatorcontrib>Kawarada, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors &amp; bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhtar, Naeem</au><au>El-Safty, Sherif A.</au><au>Abdelsalam, Mamdouh E.</au><au>Shenashen, Mohamed A.</au><au>Kawarada, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</atitle><jtitle>Biosensors &amp; bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>77</volume><spage>656</spage><epage>665</epage><pages>656-665</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood). •A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>26496219</pmid><doi>10.1016/j.bios.2015.10.023</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0956-5663
ispartof Biosensors & bioelectronics, 2016-03, Vol.77, p.656-665
issn 0956-5663
1873-4235
language eng
recordid cdi_proquest_miscellaneous_1786150567
source ScienceDirect Journals
subjects Animals
Blood
Blood Glucose - analysis
Conductometry - instrumentation
Detection
Electric Conductivity
Electrodes
Equipment Design
Equipment Failure Analysis
Foams
Glucose
Humans
Immunoassay - instrumentation
Mammalian blood
Microelectrodes
Nanostrands
Nanostructure
Nanotubes - chemistry
Nanotubes - ultrastructure
Nickel - chemistry
Reproducibility of Results
Sensing
Sensitivity and Specificity
Sensors
Three dimensional
title Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radially%20oriented%20nanostrand%20electrodes%20to%20boost%20glucose%20sensing%20in%20mammalian%20blood&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Akhtar,%20Naeem&rft.date=2016-03-15&rft.volume=77&rft.spage=656&rft.epage=665&rft.pages=656-665&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2015.10.023&rft_dat=%3Cproquest_cross%3E1785234098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1746872042&rft_id=info:pmid/26496219&rfr_iscdi=true