Loading…
Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood
Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented...
Saved in:
Published in: | Biosensors & bioelectronics 2016-03, Vol.77, p.656-665 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43 |
---|---|
cites | cdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43 |
container_end_page | 665 |
container_issue | |
container_start_page | 656 |
container_title | Biosensors & bioelectronics |
container_volume | 77 |
creator | Akhtar, Naeem El-Safty, Sherif A. Abdelsalam, Mamdouh E. Shenashen, Mohamed A. Kawarada, Hiroshi |
description | Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood).
•A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability. |
doi_str_mv | 10.1016/j.bios.2015.10.023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786150567</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0956566315304875</els_id><sourcerecordid>1785234098</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</originalsourceid><addsrcrecordid>eNqNkcFKJDEURcOgjG3P_IALydJNtUkqSaXAjYgzCg2CzqxDKnklaVKJJtWCf2-aVpfiKnBz3oX3DkInlKwoofJ8sxp8KitGqKjBirD2B1pQ1bUNZ604QAvSC9kIKdsjdFzKhhDS0Z78REdM8l4y2i_Qw71x3oTwilP2EGdwOJqYypxNdBgC2DknBwXPCQ-p5vgxbG0qgAvE4uMj9hFPZppM8CbiIaTkfqHD0YQCv9_fJfr_5_rf1U2zvvt7e3W5bixXam74SCwXYjRM2XHgpu5ERW8HYwc3EKFg5NSMnRSdVNZwwTpoTcVF_Wfc8naJzva9Tzk9b6HMevLFQggmQtoWTTslqSBCdt9BBWs56dU3UC5Vx0i98RKxPWpzKiXDqJ-yn0x-1ZTonSK90TtFeqdol1VFdej0vX87TOA-Rz6cVOBiD0C93YuHrIutaiw4n6sO7ZL_qv8NmBCi2A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1746872042</pqid></control><display><type>article</type><title>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</title><source>ScienceDirect Journals</source><creator>Akhtar, Naeem ; El-Safty, Sherif A. ; Abdelsalam, Mamdouh E. ; Shenashen, Mohamed A. ; Kawarada, Hiroshi</creator><creatorcontrib>Akhtar, Naeem ; El-Safty, Sherif A. ; Abdelsalam, Mamdouh E. ; Shenashen, Mohamed A. ; Kawarada, Hiroshi</creatorcontrib><description>Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood).
•A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability.</description><identifier>ISSN: 0956-5663</identifier><identifier>EISSN: 1873-4235</identifier><identifier>DOI: 10.1016/j.bios.2015.10.023</identifier><identifier>PMID: 26496219</identifier><language>eng</language><publisher>England: Elsevier B.V</publisher><subject>Animals ; Blood ; Blood Glucose - analysis ; Conductometry - instrumentation ; Detection ; Electric Conductivity ; Electrodes ; Equipment Design ; Equipment Failure Analysis ; Foams ; Glucose ; Humans ; Immunoassay - instrumentation ; Mammalian blood ; Microelectrodes ; Nanostrands ; Nanostructure ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Nickel - chemistry ; Reproducibility of Results ; Sensing ; Sensitivity and Specificity ; Sensors ; Three dimensional</subject><ispartof>Biosensors & bioelectronics, 2016-03, Vol.77, p.656-665</ispartof><rights>2015 Elsevier B.V.</rights><rights>Copyright © 2015 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</citedby><cites>FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26496219$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Akhtar, Naeem</creatorcontrib><creatorcontrib>El-Safty, Sherif A.</creatorcontrib><creatorcontrib>Abdelsalam, Mamdouh E.</creatorcontrib><creatorcontrib>Shenashen, Mohamed A.</creatorcontrib><creatorcontrib>Kawarada, Hiroshi</creatorcontrib><title>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</title><title>Biosensors & bioelectronics</title><addtitle>Biosens Bioelectron</addtitle><description>Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood).
•A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability.</description><subject>Animals</subject><subject>Blood</subject><subject>Blood Glucose - analysis</subject><subject>Conductometry - instrumentation</subject><subject>Detection</subject><subject>Electric Conductivity</subject><subject>Electrodes</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Foams</subject><subject>Glucose</subject><subject>Humans</subject><subject>Immunoassay - instrumentation</subject><subject>Mammalian blood</subject><subject>Microelectrodes</subject><subject>Nanostrands</subject><subject>Nanostructure</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Nickel - chemistry</subject><subject>Reproducibility of Results</subject><subject>Sensing</subject><subject>Sensitivity and Specificity</subject><subject>Sensors</subject><subject>Three dimensional</subject><issn>0956-5663</issn><issn>1873-4235</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkcFKJDEURcOgjG3P_IALydJNtUkqSaXAjYgzCg2CzqxDKnklaVKJJtWCf2-aVpfiKnBz3oX3DkInlKwoofJ8sxp8KitGqKjBirD2B1pQ1bUNZ604QAvSC9kIKdsjdFzKhhDS0Z78REdM8l4y2i_Qw71x3oTwilP2EGdwOJqYypxNdBgC2DknBwXPCQ-p5vgxbG0qgAvE4uMj9hFPZppM8CbiIaTkfqHD0YQCv9_fJfr_5_rf1U2zvvt7e3W5bixXam74SCwXYjRM2XHgpu5ERW8HYwc3EKFg5NSMnRSdVNZwwTpoTcVF_Wfc8naJzva9Tzk9b6HMevLFQggmQtoWTTslqSBCdt9BBWs56dU3UC5Vx0i98RKxPWpzKiXDqJ-yn0x-1ZTonSK90TtFeqdol1VFdej0vX87TOA-Rz6cVOBiD0C93YuHrIutaiw4n6sO7ZL_qv8NmBCi2A</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Akhtar, Naeem</creator><creator>El-Safty, Sherif A.</creator><creator>Abdelsalam, Mamdouh E.</creator><creator>Shenashen, Mohamed A.</creator><creator>Kawarada, Hiroshi</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20160315</creationdate><title>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</title><author>Akhtar, Naeem ; El-Safty, Sherif A. ; Abdelsalam, Mamdouh E. ; Shenashen, Mohamed A. ; Kawarada, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Animals</topic><topic>Blood</topic><topic>Blood Glucose - analysis</topic><topic>Conductometry - instrumentation</topic><topic>Detection</topic><topic>Electric Conductivity</topic><topic>Electrodes</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Foams</topic><topic>Glucose</topic><topic>Humans</topic><topic>Immunoassay - instrumentation</topic><topic>Mammalian blood</topic><topic>Microelectrodes</topic><topic>Nanostrands</topic><topic>Nanostructure</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Nickel - chemistry</topic><topic>Reproducibility of Results</topic><topic>Sensing</topic><topic>Sensitivity and Specificity</topic><topic>Sensors</topic><topic>Three dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akhtar, Naeem</creatorcontrib><creatorcontrib>El-Safty, Sherif A.</creatorcontrib><creatorcontrib>Abdelsalam, Mamdouh E.</creatorcontrib><creatorcontrib>Shenashen, Mohamed A.</creatorcontrib><creatorcontrib>Kawarada, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Biosensors & bioelectronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akhtar, Naeem</au><au>El-Safty, Sherif A.</au><au>Abdelsalam, Mamdouh E.</au><au>Shenashen, Mohamed A.</au><au>Kawarada, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood</atitle><jtitle>Biosensors & bioelectronics</jtitle><addtitle>Biosens Bioelectron</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>77</volume><spage>656</spage><epage>665</epage><pages>656-665</pages><issn>0956-5663</issn><eissn>1873-4235</eissn><abstract>Architecture of nanoscale electrochemical sensors for ultra-trace detection of glucose in blood is important in real-life sampling and analysis. To broaden the application of electrochemical sensing of glucose, we fabricated, for the first time, a glucose sensor electrode based on radially oriented NiO nanostrands (NSTs) onto 3D porous Ni foam substrate for monitoring, as well as selective and sensitive sensing of glucose in mammalian blood. The simple, scalable one-pot fabrication of this NST-Ni sensor design enabled control of the pattern of radially oriented NSTs onto 3D porous Ni foam substrate. The radial orientation of NST-Ni electrode onto the interior of the 3D porous substrate with controlled crystal structure size and atomic arrangement along the axis of the strands, intrinsic surface defects, and superior surface properties, such as hydrophilicity, high surface energy, and high density led to highly exposed catalytic active sites. The hierarchical NST-Ni electrode was used to develop a sensitive and selective sensor over a wide range of glucose concentrations among actively competitive ions, chemical species and molecular agents, and multi-cyclic sensing assays. The NST-Ni electrode shows significant glucose sensing performance in terms of unimpeded diffusion pathways, a wide range of concentration detection, and lower limit of detection (0.186µM) than NiO nanosheet (NS)-Ni foam electrode pattern, indicating the effectiveness of the shape-dependent structural architecture of NST-Ni electrode. In this study, the NST-Ni electrode is fabricated to develop a simple, selective method for detecting glucose in physiological fluids (e.g., mammalian blood).
•A reliable glucose sensor for mammalian blood was developed by one-pot nanoarchitecture of NiO with radially oriented nanostrands grown at Ni foam plateform.•The design provides highly sensitive and selective glucose sensors with long-term stability.•The limit of detection of NST-Ni electrode was 0.186µM, and sensitivity of 64.14μAmM−1.•The NST electrode shows high electrocatalytic performance in terms of durability.</abstract><cop>England</cop><pub>Elsevier B.V</pub><pmid>26496219</pmid><doi>10.1016/j.bios.2015.10.023</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0956-5663 |
ispartof | Biosensors & bioelectronics, 2016-03, Vol.77, p.656-665 |
issn | 0956-5663 1873-4235 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786150567 |
source | ScienceDirect Journals |
subjects | Animals Blood Blood Glucose - analysis Conductometry - instrumentation Detection Electric Conductivity Electrodes Equipment Design Equipment Failure Analysis Foams Glucose Humans Immunoassay - instrumentation Mammalian blood Microelectrodes Nanostrands Nanostructure Nanotubes - chemistry Nanotubes - ultrastructure Nickel - chemistry Reproducibility of Results Sensing Sensitivity and Specificity Sensors Three dimensional |
title | Radially oriented nanostrand electrodes to boost glucose sensing in mammalian blood |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radially%20oriented%20nanostrand%20electrodes%20to%20boost%20glucose%20sensing%20in%20mammalian%20blood&rft.jtitle=Biosensors%20&%20bioelectronics&rft.au=Akhtar,%20Naeem&rft.date=2016-03-15&rft.volume=77&rft.spage=656&rft.epage=665&rft.pages=656-665&rft.issn=0956-5663&rft.eissn=1873-4235&rft_id=info:doi/10.1016/j.bios.2015.10.023&rft_dat=%3Cproquest_cross%3E1785234098%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c488t-4f0c455fa28cfb4a101159cbacbdb058ef41af765768ca4527e3a5fa5cbd24c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1746872042&rft_id=info:pmid/26496219&rfr_iscdi=true |