Loading…

Application of almost-periodic functions for seismic profiling

We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory i...

Full description

Saved in:
Bibliographic Details
Published in:Acoustical physics 2014-05, Vol.60 (3), p.297-303
Main Authors: Zagorskii, L. S., Shkuratnik, V. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03
cites cdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03
container_end_page 303
container_issue 3
container_start_page 297
container_title Acoustical physics
container_volume 60
creator Zagorskii, L. S.
Shkuratnik, V. L.
description We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia.
doi_str_mv 10.1134/S1063771014030178
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786151031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786151031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvPXopfpe89H0IiyLX7DgQT2HmCZLlrapSXvw35ul3gRP7_Fm5g0zhFwj3CJSdveGIGhdIyADCljLE7JCLqpSSMFP857h8oifk4uUDgDQUFqtyP1mHDtv9OTDUARX6K4PaSpHG31ovSncPJgjlgoXYpGsT32-jjE43_lhf0nOnO6Svfqda_Lx-PC-fS53r08v282uNLTCqRQVda1mXLvsC6xlrrFc1iitqCVvORNowYCln8JUom50KyRzrLWCSyMN0DW5Wf5m56_Zpkn1PhnbdXqwYU4qBxbIEShmKi5UE0NK0To1Rt_r-K0Q1LEr9aerrKkWTcrcYW-jOoQ5DjnRP6IfItJqhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786151031</pqid></control><display><type>article</type><title>Application of almost-periodic functions for seismic profiling</title><source>Springer Link</source><creator>Zagorskii, L. S. ; Shkuratnik, V. L.</creator><creatorcontrib>Zagorskii, L. S. ; Shkuratnik, V. L.</creatorcontrib><description>We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771014030178</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustics ; Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics ; Algorithms ; Functions (mathematics) ; Inverse problems ; Mathematical analysis ; Perturbation theory ; Physics ; Physics and Astronomy ; Polynomials ; Profiling ; Surface chemistry</subject><ispartof>Acoustical physics, 2014-05, Vol.60 (3), p.297-303</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</citedby><cites>FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zagorskii, L. S.</creatorcontrib><creatorcontrib>Shkuratnik, V. L.</creatorcontrib><title>Application of almost-periodic functions for seismic profiling</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia.</description><subject>Acoustics</subject><subject>Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics</subject><subject>Algorithms</subject><subject>Functions (mathematics)</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Profiling</subject><subject>Surface chemistry</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvPXopfpe89H0IiyLX7DgQT2HmCZLlrapSXvw35ul3gRP7_Fm5g0zhFwj3CJSdveGIGhdIyADCljLE7JCLqpSSMFP857h8oifk4uUDgDQUFqtyP1mHDtv9OTDUARX6K4PaSpHG31ovSncPJgjlgoXYpGsT32-jjE43_lhf0nOnO6Svfqda_Lx-PC-fS53r08v282uNLTCqRQVda1mXLvsC6xlrrFc1iitqCVvORNowYCln8JUom50KyRzrLWCSyMN0DW5Wf5m56_Zpkn1PhnbdXqwYU4qBxbIEShmKi5UE0NK0To1Rt_r-K0Q1LEr9aerrKkWTcrcYW-jOoQ5DjnRP6IfItJqhg</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Zagorskii, L. S.</creator><creator>Shkuratnik, V. L.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Application of almost-periodic functions for seismic profiling</title><author>Zagorskii, L. S. ; Shkuratnik, V. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics</topic><topic>Algorithms</topic><topic>Functions (mathematics)</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Profiling</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagorskii, L. S.</creatorcontrib><creatorcontrib>Shkuratnik, V. L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagorskii, L. S.</au><au>Shkuratnik, V. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of almost-periodic functions for seismic profiling</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>60</volume><issue>3</issue><spage>297</spage><epage>303</epage><pages>297-303</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771014030178</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1063-7710
ispartof Acoustical physics, 2014-05, Vol.60 (3), p.297-303
issn 1063-7710
1562-6865
language eng
recordid cdi_proquest_miscellaneous_1786151031
source Springer Link
subjects Acoustics
Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics
Algorithms
Functions (mathematics)
Inverse problems
Mathematical analysis
Perturbation theory
Physics
Physics and Astronomy
Polynomials
Profiling
Surface chemistry
title Application of almost-periodic functions for seismic profiling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20almost-periodic%20functions%20for%20seismic%20profiling&rft.jtitle=Acoustical%20physics&rft.au=Zagorskii,%20L.%20S.&rft.date=2014-05-01&rft.volume=60&rft.issue=3&rft.spage=297&rft.epage=303&rft.pages=297-303&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771014030178&rft_dat=%3Cproquest_cross%3E1786151031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786151031&rft_id=info:pmid/&rfr_iscdi=true