Loading…
Application of almost-periodic functions for seismic profiling
We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory i...
Saved in:
Published in: | Acoustical physics 2014-05, Vol.60 (3), p.297-303 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03 |
container_end_page | 303 |
container_issue | 3 |
container_start_page | 297 |
container_title | Acoustical physics |
container_volume | 60 |
creator | Zagorskii, L. S. Shkuratnik, V. L. |
description | We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia. |
doi_str_mv | 10.1134/S1063771014030178 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786151031</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786151031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</originalsourceid><addsrcrecordid>eNp9UE1LxDAUDKLguvoDvPXopfpe89H0IiyLX7DgQT2HmCZLlrapSXvw35ul3gRP7_Fm5g0zhFwj3CJSdveGIGhdIyADCljLE7JCLqpSSMFP857h8oifk4uUDgDQUFqtyP1mHDtv9OTDUARX6K4PaSpHG31ovSncPJgjlgoXYpGsT32-jjE43_lhf0nOnO6Svfqda_Lx-PC-fS53r08v282uNLTCqRQVda1mXLvsC6xlrrFc1iitqCVvORNowYCln8JUom50KyRzrLWCSyMN0DW5Wf5m56_Zpkn1PhnbdXqwYU4qBxbIEShmKi5UE0NK0To1Rt_r-K0Q1LEr9aerrKkWTcrcYW-jOoQ5DjnRP6IfItJqhg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786151031</pqid></control><display><type>article</type><title>Application of almost-periodic functions for seismic profiling</title><source>Springer Link</source><creator>Zagorskii, L. S. ; Shkuratnik, V. L.</creator><creatorcontrib>Zagorskii, L. S. ; Shkuratnik, V. L.</creatorcontrib><description>We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia.</description><identifier>ISSN: 1063-7710</identifier><identifier>EISSN: 1562-6865</identifier><identifier>DOI: 10.1134/S1063771014030178</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Acoustics ; Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics ; Algorithms ; Functions (mathematics) ; Inverse problems ; Mathematical analysis ; Perturbation theory ; Physics ; Physics and Astronomy ; Polynomials ; Profiling ; Surface chemistry</subject><ispartof>Acoustical physics, 2014-05, Vol.60 (3), p.297-303</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</citedby><cites>FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zagorskii, L. S.</creatorcontrib><creatorcontrib>Shkuratnik, V. L.</creatorcontrib><title>Application of almost-periodic functions for seismic profiling</title><title>Acoustical physics</title><addtitle>Acoust. Phys</addtitle><description>We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia.</description><subject>Acoustics</subject><subject>Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics</subject><subject>Algorithms</subject><subject>Functions (mathematics)</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Perturbation theory</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Profiling</subject><subject>Surface chemistry</subject><issn>1063-7710</issn><issn>1562-6865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAUDKLguvoDvPXopfpe89H0IiyLX7DgQT2HmCZLlrapSXvw35ul3gRP7_Fm5g0zhFwj3CJSdveGIGhdIyADCljLE7JCLqpSSMFP857h8oifk4uUDgDQUFqtyP1mHDtv9OTDUARX6K4PaSpHG31ovSncPJgjlgoXYpGsT32-jjE43_lhf0nOnO6Svfqda_Lx-PC-fS53r08v282uNLTCqRQVda1mXLvsC6xlrrFc1iitqCVvORNowYCln8JUom50KyRzrLWCSyMN0DW5Wf5m56_Zpkn1PhnbdXqwYU4qBxbIEShmKi5UE0NK0To1Rt_r-K0Q1LEr9aerrKkWTcrcYW-jOoQ5DjnRP6IfItJqhg</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Zagorskii, L. S.</creator><creator>Shkuratnik, V. L.</creator><general>Pleiades Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140501</creationdate><title>Application of almost-periodic functions for seismic profiling</title><author>Zagorskii, L. S. ; Shkuratnik, V. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acoustics</topic><topic>Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics</topic><topic>Algorithms</topic><topic>Functions (mathematics)</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Perturbation theory</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Profiling</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zagorskii, L. S.</creatorcontrib><creatorcontrib>Shkuratnik, V. L.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Acoustical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zagorskii, L. S.</au><au>Shkuratnik, V. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of almost-periodic functions for seismic profiling</atitle><jtitle>Acoustical physics</jtitle><stitle>Acoust. Phys</stitle><date>2014-05-01</date><risdate>2014</risdate><volume>60</volume><issue>3</issue><spage>297</spage><epage>303</epage><pages>297-303</pages><issn>1063-7710</issn><eissn>1562-6865</eissn><abstract>We consider a method for solving the inverse problem of finding a two-dimensional vertical seismic velocity profile of longitudinal and transverse waves in a massif from Rayleigh polarization waves recorded on the surface. We present an algorithm of the method based on applying perturbation theory in almost-periodic functions, and as well as the polynomials of B.M. Levitan. The possibilities of the method are illustrated by the results of comparison with geological data obtained in regions of the Northern Caucasus using active seismics. We formulate the calculation stability conditions and present an example based on microseism data obtained by the Joint Institute for Physics of the Earth, Russian Academy of Sciences (OIFZ RAN) in an area of North Ossetia.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1063771014030178</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-7710 |
ispartof | Acoustical physics, 2014-05, Vol.60 (3), p.297-303 |
issn | 1063-7710 1562-6865 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786151031 |
source | Springer Link |
subjects | Acoustics Acoustics of Structurally Inhomogeneous Solid Bodies. Geological Acoustics Algorithms Functions (mathematics) Inverse problems Mathematical analysis Perturbation theory Physics Physics and Astronomy Polynomials Profiling Surface chemistry |
title | Application of almost-periodic functions for seismic profiling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A58%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20almost-periodic%20functions%20for%20seismic%20profiling&rft.jtitle=Acoustical%20physics&rft.au=Zagorskii,%20L.%20S.&rft.date=2014-05-01&rft.volume=60&rft.issue=3&rft.spage=297&rft.epage=303&rft.pages=297-303&rft.issn=1063-7710&rft.eissn=1562-6865&rft_id=info:doi/10.1134/S1063771014030178&rft_dat=%3Cproquest_cross%3E1786151031%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-623fda45af00904d4f9e58718e6785d5461e0c0e3b6c2679ad684f4de658c8c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786151031&rft_id=info:pmid/&rfr_iscdi=true |