Loading…

Lattice doped Zn–SnO2 nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties

•A simple, novel and surfactant free hydrothermal route to prepare SnO2 nanospheres.•A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images.•Incorporation of Zn ions into SnO2 lattices clearly elucidated with XRD and XPS spectrums.•Three fold time increased re...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2015-12, Vol.357, p.1511-1521
Main Authors: Baraneedharan, P., Imran Hussain, S., Dinesh, V.P., Siva, C., Biji, P., Sivakumar, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c310t-dddf4a53f70f83b45cf0768e774b099a802ee2d306b0653a69c5afeb1beb52143
cites cdi_FETCH-LOGICAL-c310t-dddf4a53f70f83b45cf0768e774b099a802ee2d306b0653a69c5afeb1beb52143
container_end_page 1521
container_issue
container_start_page 1511
container_title Applied surface science
container_volume 357
creator Baraneedharan, P.
Imran Hussain, S.
Dinesh, V.P.
Siva, C.
Biji, P.
Sivakumar, M.
description •A simple, novel and surfactant free hydrothermal route to prepare SnO2 nanospheres.•A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images.•Incorporation of Zn ions into SnO2 lattices clearly elucidated with XRD and XPS spectrums.•Three fold time increased response in Zn–SnO2 nanospheres when compared to undoped SnO2. A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn2+) doped SnO2 nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn2+ ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn2+ ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn2+ ions has a significant effect on the electrical conductivity of SnO2 nanospheres. Comparative tests for gas sensors based on Zn doped SnO2 nanospheres and SnO2 nanospheres clearly show that the former exhibited excellent NO2 sensing performance. The responses of Zn2+ ions incorporated SnO2 nanospheres sensor were increased 3 fold at trace level NO2 gas concentrations ranging from 1 to 5ppm. The excellent sensitivity, selectivity and fast response make the Zn2+ doped SnO2 nanospheres ideal for NO2 sensing.
doi_str_mv 10.1016/j.apsusc.2015.09.257
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786155506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169433215023880</els_id><sourcerecordid>1786155506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-dddf4a53f70f83b45cf0768e774b099a802ee2d306b0653a69c5afeb1beb52143</originalsourceid><addsrcrecordid>eNp9kM1O3TAQhS1UJG5p34CFlyyaYMdxfrqohFBbKl2JRcumG8txxuCrXDv1OKjs-gYs-oY8CY4ua1Y-1pwzR_MRcsZZyRlvLnalnnFBU1aMy5L1ZSXbI7LhXSsKKbv6HdlkW1_UQlQn5D3ijjFe5emGPG11Ss4AHcMMI_3tn__9_-lvKuq1DzjfQwT8TC8pPmKCvc5WCn_nKcQsg6fBrkHtE11_YC2YhDRLTHExaYl6-kTDnGOr0H6k4O-1N7nqTiNF8Oj8HZ1jbo_JAX4gx1ZPCB9f31Ny--3rr6vrYnvz_cfV5bYwgrNUjONoay2FbZntxFBLY1nbdNC29cD6XnesAqhGwZqBNVLopjdSWxj4AIOseC1Oyflhb67-swAmtXdoYJq0h7Cg4m3XcCkla7K1PlhNDIgRrJqj2-v4qDhTK3-1Uwf-auWvWK8y_xz7cohBPuPBQVRoHKynu5gpqTG4txe8AL0ZlLM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786155506</pqid></control><display><type>article</type><title>Lattice doped Zn–SnO2 nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties</title><source>ScienceDirect Freedom Collection</source><creator>Baraneedharan, P. ; Imran Hussain, S. ; Dinesh, V.P. ; Siva, C. ; Biji, P. ; Sivakumar, M.</creator><creatorcontrib>Baraneedharan, P. ; Imran Hussain, S. ; Dinesh, V.P. ; Siva, C. ; Biji, P. ; Sivakumar, M.</creatorcontrib><description>•A simple, novel and surfactant free hydrothermal route to prepare SnO2 nanospheres.•A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images.•Incorporation of Zn ions into SnO2 lattices clearly elucidated with XRD and XPS spectrums.•Three fold time increased response in Zn–SnO2 nanospheres when compared to undoped SnO2. A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn2+) doped SnO2 nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn2+ ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn2+ ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn2+ ions has a significant effect on the electrical conductivity of SnO2 nanospheres. Comparative tests for gas sensors based on Zn doped SnO2 nanospheres and SnO2 nanospheres clearly show that the former exhibited excellent NO2 sensing performance. The responses of Zn2+ ions incorporated SnO2 nanospheres sensor were increased 3 fold at trace level NO2 gas concentrations ranging from 1 to 5ppm. The excellent sensitivity, selectivity and fast response make the Zn2+ doped SnO2 nanospheres ideal for NO2 sensing.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2015.09.257</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Diffraction ; Environmental monitoring ; Gas sensors ; Hydrothermal ; Lattice doping ; Lattices ; Nanospheres ; Nitrogen dioxide ; Resistive sensors ; Tin dioxide ; Tin oxides ; Zinc</subject><ispartof>Applied surface science, 2015-12, Vol.357, p.1511-1521</ispartof><rights>2015 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-dddf4a53f70f83b45cf0768e774b099a802ee2d306b0653a69c5afeb1beb52143</citedby><cites>FETCH-LOGICAL-c310t-dddf4a53f70f83b45cf0768e774b099a802ee2d306b0653a69c5afeb1beb52143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Baraneedharan, P.</creatorcontrib><creatorcontrib>Imran Hussain, S.</creatorcontrib><creatorcontrib>Dinesh, V.P.</creatorcontrib><creatorcontrib>Siva, C.</creatorcontrib><creatorcontrib>Biji, P.</creatorcontrib><creatorcontrib>Sivakumar, M.</creatorcontrib><title>Lattice doped Zn–SnO2 nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties</title><title>Applied surface science</title><description>•A simple, novel and surfactant free hydrothermal route to prepare SnO2 nanospheres.•A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images.•Incorporation of Zn ions into SnO2 lattices clearly elucidated with XRD and XPS spectrums.•Three fold time increased response in Zn–SnO2 nanospheres when compared to undoped SnO2. A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn2+) doped SnO2 nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn2+ ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn2+ ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn2+ ions has a significant effect on the electrical conductivity of SnO2 nanospheres. Comparative tests for gas sensors based on Zn doped SnO2 nanospheres and SnO2 nanospheres clearly show that the former exhibited excellent NO2 sensing performance. The responses of Zn2+ ions incorporated SnO2 nanospheres sensor were increased 3 fold at trace level NO2 gas concentrations ranging from 1 to 5ppm. The excellent sensitivity, selectivity and fast response make the Zn2+ doped SnO2 nanospheres ideal for NO2 sensing.</description><subject>Diffraction</subject><subject>Environmental monitoring</subject><subject>Gas sensors</subject><subject>Hydrothermal</subject><subject>Lattice doping</subject><subject>Lattices</subject><subject>Nanospheres</subject><subject>Nitrogen dioxide</subject><subject>Resistive sensors</subject><subject>Tin dioxide</subject><subject>Tin oxides</subject><subject>Zinc</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kM1O3TAQhS1UJG5p34CFlyyaYMdxfrqohFBbKl2JRcumG8txxuCrXDv1OKjs-gYs-oY8CY4ua1Y-1pwzR_MRcsZZyRlvLnalnnFBU1aMy5L1ZSXbI7LhXSsKKbv6HdlkW1_UQlQn5D3ijjFe5emGPG11Ss4AHcMMI_3tn__9_-lvKuq1DzjfQwT8TC8pPmKCvc5WCn_nKcQsg6fBrkHtE11_YC2YhDRLTHExaYl6-kTDnGOr0H6k4O-1N7nqTiNF8Oj8HZ1jbo_JAX4gx1ZPCB9f31Ny--3rr6vrYnvz_cfV5bYwgrNUjONoay2FbZntxFBLY1nbdNC29cD6XnesAqhGwZqBNVLopjdSWxj4AIOseC1Oyflhb67-swAmtXdoYJq0h7Cg4m3XcCkla7K1PlhNDIgRrJqj2-v4qDhTK3-1Uwf-auWvWK8y_xz7cohBPuPBQVRoHKynu5gpqTG4txe8AL0ZlLM</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Baraneedharan, P.</creator><creator>Imran Hussain, S.</creator><creator>Dinesh, V.P.</creator><creator>Siva, C.</creator><creator>Biji, P.</creator><creator>Sivakumar, M.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151201</creationdate><title>Lattice doped Zn–SnO2 nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties</title><author>Baraneedharan, P. ; Imran Hussain, S. ; Dinesh, V.P. ; Siva, C. ; Biji, P. ; Sivakumar, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-dddf4a53f70f83b45cf0768e774b099a802ee2d306b0653a69c5afeb1beb52143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Diffraction</topic><topic>Environmental monitoring</topic><topic>Gas sensors</topic><topic>Hydrothermal</topic><topic>Lattice doping</topic><topic>Lattices</topic><topic>Nanospheres</topic><topic>Nitrogen dioxide</topic><topic>Resistive sensors</topic><topic>Tin dioxide</topic><topic>Tin oxides</topic><topic>Zinc</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baraneedharan, P.</creatorcontrib><creatorcontrib>Imran Hussain, S.</creatorcontrib><creatorcontrib>Dinesh, V.P.</creatorcontrib><creatorcontrib>Siva, C.</creatorcontrib><creatorcontrib>Biji, P.</creatorcontrib><creatorcontrib>Sivakumar, M.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baraneedharan, P.</au><au>Imran Hussain, S.</au><au>Dinesh, V.P.</au><au>Siva, C.</au><au>Biji, P.</au><au>Sivakumar, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice doped Zn–SnO2 nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties</atitle><jtitle>Applied surface science</jtitle><date>2015-12-01</date><risdate>2015</risdate><volume>357</volume><spage>1511</spage><epage>1521</epage><pages>1511-1521</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>•A simple, novel and surfactant free hydrothermal route to prepare SnO2 nanospheres.•A systematic investigation of growth mechanism with the assist of time dependent HR-TEM images.•Incorporation of Zn ions into SnO2 lattices clearly elucidated with XRD and XPS spectrums.•Three fold time increased response in Zn–SnO2 nanospheres when compared to undoped SnO2. A surfactant-free one step hydrothermal method is reported to synthesize zinc (Zn2+) doped SnO2 nanospheres. The structural analysis of X-ray diffraction confirms the tetragonal crystal system of the material with superior crystalline nature. The shift in diffraction peak, variation in lattice constant and disparity in particle size confirm the incorporation of Zn2+ ions to the Sn host lattices. The lattice doped structure, the disparity in morphology, size and shape by the addition of Zn2+ ions are evident from X-ray photoelectron spectroscopic and electron microscopic analysis. Significant changes in the absorption edge and the band gap with increased doping concentration were observed in UV–vis absorption spectral analysis. The formation of acceptor energy levels with the incorporation of Zn2+ ions has a significant effect on the electrical conductivity of SnO2 nanospheres. Comparative tests for gas sensors based on Zn doped SnO2 nanospheres and SnO2 nanospheres clearly show that the former exhibited excellent NO2 sensing performance. The responses of Zn2+ ions incorporated SnO2 nanospheres sensor were increased 3 fold at trace level NO2 gas concentrations ranging from 1 to 5ppm. The excellent sensitivity, selectivity and fast response make the Zn2+ doped SnO2 nanospheres ideal for NO2 sensing.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2015.09.257</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2015-12, Vol.357, p.1511-1521
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_1786155506
source ScienceDirect Freedom Collection
subjects Diffraction
Environmental monitoring
Gas sensors
Hydrothermal
Lattice doping
Lattices
Nanospheres
Nitrogen dioxide
Resistive sensors
Tin dioxide
Tin oxides
Zinc
title Lattice doped Zn–SnO2 nanospheres: A systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T09%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20doped%20Zn%E2%80%93SnO2%20nanospheres:%20A%20systematic%20exploration%20of%20dopant%20ion%20effects%20on%20structural,%20optical,%20and%20enhanced%20gas%20sensing%20properties&rft.jtitle=Applied%20surface%20science&rft.au=Baraneedharan,%20P.&rft.date=2015-12-01&rft.volume=357&rft.spage=1511&rft.epage=1521&rft.pages=1511-1521&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2015.09.257&rft_dat=%3Cproquest_cross%3E1786155506%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c310t-dddf4a53f70f83b45cf0768e774b099a802ee2d306b0653a69c5afeb1beb52143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786155506&rft_id=info:pmid/&rfr_iscdi=true