Loading…
Development of gallium oxide power devices
Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐gro...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Applications and materials science, 2014-01, Vol.211 (1), p.21-26 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133 |
---|---|
cites | cdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133 |
container_end_page | 26 |
container_issue | 1 |
container_start_page | 21 |
container_title | Physica status solidi. A, Applications and materials science |
container_volume | 211 |
creator | Higashiwaki, Masataka Sasaki, Kohei Kuramata, Akito Masui, Takekazu Yamakoshi, Shigenobu |
description | Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications. |
doi_str_mv | 10.1002/pssa.201330197 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786157630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786157630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKtXzwEvIqTObpLd7LFUW0XRYis9LptkIqlJN-42_fj3JkSKePE0c3iel5nXcS4JDAgAva2sVQMKxPeBCH7k9EjEqMd8Io4PO8Cpc2btEiAIA056zs0dbrDQVYmrtasz90MVRV6Xrt7lKbqV3qJxU9zkCdpz5yRThcWLn9l33sf389GD9_w6eRwNn72kzfQoSTMW-olKY5EgIxkPOLAUGfAU_CxSivpxGCRCQRqHlCoiEhVGNEOMIW6u7zvXXW5l9FeNdi3L3CZYFGqFuraS8IiRkDfPNOjVH3Spa7NqrpMkEMCbWqClBh2VGG2twUxWJi-V2UsCsq1OttXJQ3WNIDphmxe4_4eW09ls-Nv1Oje3a9wdXGU-JeM-D-XiZSLp-O1pMRWBnPvfTL-AnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490700200</pqid></control><display><type>article</type><title>Development of gallium oxide power devices</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Higashiwaki, Masataka ; Sasaki, Kohei ; Kuramata, Akito ; Masui, Takekazu ; Yamakoshi, Shigenobu</creator><creatorcontrib>Higashiwaki, Masataka ; Sasaki, Kohei ; Kuramata, Akito ; Masui, Takekazu ; Yamakoshi, Shigenobu</creatorcontrib><description>Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201330197</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Breakdown ; Electronic devices ; Epitaxy ; field-effect transistors ; Ga2O3 ; Gallium oxides ; MESFET ; MESFETs ; Molecular beam epitaxy ; power devices ; Schottky barrier diodes ; Semiconductors ; Single crystals</subject><ispartof>Physica status solidi. A, Applications and materials science, 2014-01, Vol.211 (1), p.21-26</ispartof><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</citedby><cites>FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Higashiwaki, Masataka</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Masui, Takekazu</creatorcontrib><creatorcontrib>Yamakoshi, Shigenobu</creatorcontrib><title>Development of gallium oxide power devices</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>Phys. Status Solidi A</addtitle><description>Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications.</description><subject>Breakdown</subject><subject>Electronic devices</subject><subject>Epitaxy</subject><subject>field-effect transistors</subject><subject>Ga2O3</subject><subject>Gallium oxides</subject><subject>MESFET</subject><subject>MESFETs</subject><subject>Molecular beam epitaxy</subject><subject>power devices</subject><subject>Schottky barrier diodes</subject><subject>Semiconductors</subject><subject>Single crystals</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWKtXzwEvIqTObpLd7LFUW0XRYis9LptkIqlJN-42_fj3JkSKePE0c3iel5nXcS4JDAgAva2sVQMKxPeBCH7k9EjEqMd8Io4PO8Cpc2btEiAIA056zs0dbrDQVYmrtasz90MVRV6Xrt7lKbqV3qJxU9zkCdpz5yRThcWLn9l33sf389GD9_w6eRwNn72kzfQoSTMW-olKY5EgIxkPOLAUGfAU_CxSivpxGCRCQRqHlCoiEhVGNEOMIW6u7zvXXW5l9FeNdi3L3CZYFGqFuraS8IiRkDfPNOjVH3Spa7NqrpMkEMCbWqClBh2VGG2twUxWJi-V2UsCsq1OttXJQ3WNIDphmxe4_4eW09ls-Nv1Oje3a9wdXGU-JeM-D-XiZSLp-O1pMRWBnPvfTL-AnA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Higashiwaki, Masataka</creator><creator>Sasaki, Kohei</creator><creator>Kuramata, Akito</creator><creator>Masui, Takekazu</creator><creator>Yamakoshi, Shigenobu</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Development of gallium oxide power devices</title><author>Higashiwaki, Masataka ; Sasaki, Kohei ; Kuramata, Akito ; Masui, Takekazu ; Yamakoshi, Shigenobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Breakdown</topic><topic>Electronic devices</topic><topic>Epitaxy</topic><topic>field-effect transistors</topic><topic>Ga2O3</topic><topic>Gallium oxides</topic><topic>MESFET</topic><topic>MESFETs</topic><topic>Molecular beam epitaxy</topic><topic>power devices</topic><topic>Schottky barrier diodes</topic><topic>Semiconductors</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higashiwaki, Masataka</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Masui, Takekazu</creatorcontrib><creatorcontrib>Yamakoshi, Shigenobu</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higashiwaki, Masataka</au><au>Sasaki, Kohei</au><au>Kuramata, Akito</au><au>Masui, Takekazu</au><au>Yamakoshi, Shigenobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of gallium oxide power devices</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>Phys. Status Solidi A</addtitle><date>2014-01</date><risdate>2014</risdate><volume>211</volume><issue>1</issue><spage>21</spage><epage>26</epage><pages>21-26</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssa.201330197</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-6300 |
ispartof | Physica status solidi. A, Applications and materials science, 2014-01, Vol.211 (1), p.21-26 |
issn | 1862-6300 1862-6319 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786157630 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Breakdown Electronic devices Epitaxy field-effect transistors Ga2O3 Gallium oxides MESFET MESFETs Molecular beam epitaxy power devices Schottky barrier diodes Semiconductors Single crystals |
title | Development of gallium oxide power devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20gallium%20oxide%20power%20devices&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Higashiwaki,%20Masataka&rft.date=2014-01&rft.volume=211&rft.issue=1&rft.spage=21&rft.epage=26&rft.pages=21-26&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201330197&rft_dat=%3Cproquest_cross%3E1786157630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490700200&rft_id=info:pmid/&rfr_iscdi=true |