Loading…

Development of gallium oxide power devices

Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐gro...

Full description

Saved in:
Bibliographic Details
Published in:Physica status solidi. A, Applications and materials science Applications and materials science, 2014-01, Vol.211 (1), p.21-26
Main Authors: Higashiwaki, Masataka, Sasaki, Kohei, Kuramata, Akito, Masui, Takekazu, Yamakoshi, Shigenobu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133
cites cdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133
container_end_page 26
container_issue 1
container_start_page 21
container_title Physica status solidi. A, Applications and materials science
container_volume 211
creator Higashiwaki, Masataka
Sasaki, Kohei
Kuramata, Akito
Masui, Takekazu
Yamakoshi, Shigenobu
description Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications.
doi_str_mv 10.1002/pssa.201330197
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786157630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786157630</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhoMoWKtXzwEvIqTObpLd7LFUW0XRYis9LptkIqlJN-42_fj3JkSKePE0c3iel5nXcS4JDAgAva2sVQMKxPeBCH7k9EjEqMd8Io4PO8Cpc2btEiAIA056zs0dbrDQVYmrtasz90MVRV6Xrt7lKbqV3qJxU9zkCdpz5yRThcWLn9l33sf389GD9_w6eRwNn72kzfQoSTMW-olKY5EgIxkPOLAUGfAU_CxSivpxGCRCQRqHlCoiEhVGNEOMIW6u7zvXXW5l9FeNdi3L3CZYFGqFuraS8IiRkDfPNOjVH3Spa7NqrpMkEMCbWqClBh2VGG2twUxWJi-V2UsCsq1OttXJQ3WNIDphmxe4_4eW09ls-Nv1Oje3a9wdXGU-JeM-D-XiZSLp-O1pMRWBnPvfTL-AnA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1490700200</pqid></control><display><type>article</type><title>Development of gallium oxide power devices</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Higashiwaki, Masataka ; Sasaki, Kohei ; Kuramata, Akito ; Masui, Takekazu ; Yamakoshi, Shigenobu</creator><creatorcontrib>Higashiwaki, Masataka ; Sasaki, Kohei ; Kuramata, Akito ; Masui, Takekazu ; Yamakoshi, Shigenobu</creatorcontrib><description>Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications.</description><identifier>ISSN: 1862-6300</identifier><identifier>EISSN: 1862-6319</identifier><identifier>DOI: 10.1002/pssa.201330197</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Breakdown ; Electronic devices ; Epitaxy ; field-effect transistors ; Ga2O3 ; Gallium oxides ; MESFET ; MESFETs ; Molecular beam epitaxy ; power devices ; Schottky barrier diodes ; Semiconductors ; Single crystals</subject><ispartof>Physica status solidi. A, Applications and materials science, 2014-01, Vol.211 (1), p.21-26</ispartof><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</citedby><cites>FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Higashiwaki, Masataka</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Masui, Takekazu</creatorcontrib><creatorcontrib>Yamakoshi, Shigenobu</creatorcontrib><title>Development of gallium oxide power devices</title><title>Physica status solidi. A, Applications and materials science</title><addtitle>Phys. Status Solidi A</addtitle><description>Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications.</description><subject>Breakdown</subject><subject>Electronic devices</subject><subject>Epitaxy</subject><subject>field-effect transistors</subject><subject>Ga2O3</subject><subject>Gallium oxides</subject><subject>MESFET</subject><subject>MESFETs</subject><subject>Molecular beam epitaxy</subject><subject>power devices</subject><subject>Schottky barrier diodes</subject><subject>Semiconductors</subject><subject>Single crystals</subject><issn>1862-6300</issn><issn>1862-6319</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhoMoWKtXzwEvIqTObpLd7LFUW0XRYis9LptkIqlJN-42_fj3JkSKePE0c3iel5nXcS4JDAgAva2sVQMKxPeBCH7k9EjEqMd8Io4PO8Cpc2btEiAIA056zs0dbrDQVYmrtasz90MVRV6Xrt7lKbqV3qJxU9zkCdpz5yRThcWLn9l33sf389GD9_w6eRwNn72kzfQoSTMW-olKY5EgIxkPOLAUGfAU_CxSivpxGCRCQRqHlCoiEhVGNEOMIW6u7zvXXW5l9FeNdi3L3CZYFGqFuraS8IiRkDfPNOjVH3Spa7NqrpMkEMCbWqClBh2VGG2twUxWJi-V2UsCsq1OttXJQ3WNIDphmxe4_4eW09ls-Nv1Oje3a9wdXGU-JeM-D-XiZSLp-O1pMRWBnPvfTL-AnA</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Higashiwaki, Masataka</creator><creator>Sasaki, Kohei</creator><creator>Kuramata, Akito</creator><creator>Masui, Takekazu</creator><creator>Yamakoshi, Shigenobu</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201401</creationdate><title>Development of gallium oxide power devices</title><author>Higashiwaki, Masataka ; Sasaki, Kohei ; Kuramata, Akito ; Masui, Takekazu ; Yamakoshi, Shigenobu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Breakdown</topic><topic>Electronic devices</topic><topic>Epitaxy</topic><topic>field-effect transistors</topic><topic>Ga2O3</topic><topic>Gallium oxides</topic><topic>MESFET</topic><topic>MESFETs</topic><topic>Molecular beam epitaxy</topic><topic>power devices</topic><topic>Schottky barrier diodes</topic><topic>Semiconductors</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Higashiwaki, Masataka</creatorcontrib><creatorcontrib>Sasaki, Kohei</creatorcontrib><creatorcontrib>Kuramata, Akito</creatorcontrib><creatorcontrib>Masui, Takekazu</creatorcontrib><creatorcontrib>Yamakoshi, Shigenobu</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica status solidi. A, Applications and materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Higashiwaki, Masataka</au><au>Sasaki, Kohei</au><au>Kuramata, Akito</au><au>Masui, Takekazu</au><au>Yamakoshi, Shigenobu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of gallium oxide power devices</atitle><jtitle>Physica status solidi. A, Applications and materials science</jtitle><addtitle>Phys. Status Solidi A</addtitle><date>2014-01</date><risdate>2014</risdate><volume>211</volume><issue>1</issue><spage>21</spage><epage>26</epage><pages>21-26</pages><issn>1862-6300</issn><eissn>1862-6319</eissn><abstract>Gallium oxide (Ga2O3) is a strong contender for power electronic devices. The material possesses excellent properties such as a large bandgap of 4.7–4.9 eV for a high breakdown field of 8 MV cm−1. Low cost, high volume production of large single‐crystal β‐Ga2O3 substrates can be realized by melt‐growth methods commonly adopted in the industry. High‐quality n‐type Ga2O3 epitaxial thin films with controllable carrier densities were obtained by ozone molecular beam epitaxy (MBE). We fabricated Ga2O3 metal‐semiconductor field‐effect transistors (MESFETs) and Schottky barrier diodes (SBDs) from single‐crystal Ga2O3 substrates and MBE‐grown epitaxial wafers. The MESFETs delivered excellent device performance including an off‐state breakdown voltage (Vbr) of over 250 V, a low leakage current of only few μA mm−1, and a high drain current on/off ratio of about four orders of magnitude. The SBDs also showed good characteristics such as near‐unity ideality factors and high reverse Vbr. These results indicate that Ga2O3 can potentially meet or even exceed the performance of Si and typical widegap semiconductors such as SiC or GaN for ultrahigh‐voltage power switching applications.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssa.201330197</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1862-6300
ispartof Physica status solidi. A, Applications and materials science, 2014-01, Vol.211 (1), p.21-26
issn 1862-6300
1862-6319
language eng
recordid cdi_proquest_miscellaneous_1786157630
source Wiley-Blackwell Read & Publish Collection
subjects Breakdown
Electronic devices
Epitaxy
field-effect transistors
Ga2O3
Gallium oxides
MESFET
MESFETs
Molecular beam epitaxy
power devices
Schottky barrier diodes
Semiconductors
Single crystals
title Development of gallium oxide power devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T12%3A19%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20gallium%20oxide%20power%20devices&rft.jtitle=Physica%20status%20solidi.%20A,%20Applications%20and%20materials%20science&rft.au=Higashiwaki,%20Masataka&rft.date=2014-01&rft.volume=211&rft.issue=1&rft.spage=21&rft.epage=26&rft.pages=21-26&rft.issn=1862-6300&rft.eissn=1862-6319&rft_id=info:doi/10.1002/pssa.201330197&rft_dat=%3Cproquest_cross%3E1786157630%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4547-21df653cadb9ce61f74706de607d03f8aa23b54c9a0db522a19ca582feeb0b133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1490700200&rft_id=info:pmid/&rfr_iscdi=true