Loading…
The Tube Length and Diameter Dependence of Electronic Structures in Zigzag Carbon Nanotubes
The effects of the tube length and diameter on the thermodynamic stability and chemical reactivity of zigzag carbon nanotubes (CNTs) with finite-length Clar cell (FLCC) were examined by means of topological resonance energy (TRE) and algebraic structure count (ASC), respectively. It was found that T...
Saved in:
Published in: | Journal of Computer Chemistry, Japan Japan, 2015, Vol.14(3), pp.85-87 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of the tube length and diameter on the thermodynamic stability and chemical reactivity of zigzag carbon nanotubes (CNTs) with finite-length Clar cell (FLCC) were examined by means of topological resonance energy (TRE) and algebraic structure count (ASC), respectively. It was found that TRE and HOMO-LUMO gap in FLCC-(3,0) CNT with fully-benzenoid oscillate as functions of the tube length with the period of 2. In contrast, FLCC-(4,0) and (5,0) CNTs were found to have the tube length dependence different from that of FLCC-(3,0) CNT. This difference in tube diameter (chiral-index) dependence was found to be characterized by whether ASC is equal to Kekulé structure count or not. |
---|---|
ISSN: | 1347-1767 1347-3824 |
DOI: | 10.2477/jccj.2015-0037 |