Loading…

Structural and mechanistic understanding of an active and durable graphene carbocatalyst for reduction of 4-nitrophenol at room temperature

The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid problems caused by metal- containing catalysts, for example, environmental pollution by h...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2015-12, Vol.8 (12), p.3992-4006
Main Authors: Hu, Huawen, Xin, John H., Hu, Hong, Wang, Xiaowen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of an active, durable, and metal-free carbocatalyst that is able to replace metal-based catalysts is of increasing scientific and technological importance. The use of such a catalyst would avoid problems caused by metal- containing catalysts, for example, environmental pollution by heavy metals and depletion of rare metal resources. Herein, an active and durable graphene carbocatalyst is presented for the carbocatalytic conversion of 4-nitrophenol to 4-aminophenol at ambient temperature. The carbocatalyst was prepared via a mild, water-based reaction between L-ascorbic acid (AA) and graphene oxide (GO) and did not involve any other reactants. During the structure and catalytic property optimization, a series of carbocatalysts were fabricated at various reaction temperatures and AA/GO ratios. Using several characterization techniques, detailed structural features of these carbocatalysts were identified. Possible active species and sites on the carbocatalysts were also identified such as certain oxygen-containing groups, the ~x-conjugated system, and graphene sheet edges. In addition, the synergistic effect between these active species and sites on the resulting catalytic activity is highlighted. Furthermore, we clarified the origin of the high stability and durability of the optimized carbocatalyst. The work presented here aids the design of high-performance carbocatalysts for hydrogenation reactions, and increases understanding of the structural and mechanistic aspects at the molecular level that lead to high catalyst activity and durability.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-015-0902-z