Loading…
Mechanism of CO sub(2) Fixation by Ir super(I)-X Bonds (X = OH, OR, N, C)
Density functional theory calculations have been used to investigate the CO sub(2) fixation mechanism proposed by Nolan et al. for the Ir super(I) complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that...
Saved in:
Published in: | European journal of inorganic chemistry 2015-10, Vol.2015 (28), p.4653-4657 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4657 |
container_issue | 28 |
container_start_page | 4653 |
container_title | European journal of inorganic chemistry |
container_volume | 2015 |
creator | Vummaleti, Sai Vikrama Chaitanya Talarico, Giovanni Nolan, Steven P Cavallo, Luigi Poater, Albert |
description | Density functional theory calculations have been used to investigate the CO sub(2) fixation mechanism proposed by Nolan et al. for the Ir super(I) complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO sub(2) insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO sub(2) insertion into the Ir-OR super(1) (R super(1) = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. We report the DFT-based investigation of the mechanism of CO sub(2) insertion into Ir super(I)-C and Ir super(I)-heteroatom bonds (such as Ir-N and Ir-O). The calculated barriers show that CO sub(2) insertion is the rate-limiting step, in accordance with experimental results. |
doi_str_mv | 10.1002/ejic.201500905 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786165023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786165023</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_17861650233</originalsourceid><addsrcrecordid>eNqVik0LgkAUAJco6PPa-R0VtN7uqumhS1LooYTo0C3MNtowt3wJ9e_r0B_oNMMwjI05TjiimKqrLiYCuY8Yod9iPY5R5GIQivbXPem5PPLCLusTXRFRogx6LF2r4pJXmm5gzhBnQM3REjas9Ct_alPB8Q1p_a13VVup7e5hYaoTgbWHOWSJA9nWgY0DsT1knXNekhr9OGDWarmLE_dem0ej6Hm4aSpUWeaVMg0d-CwMeOCjkPKP9QMPuUFx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786165023</pqid></control><display><type>article</type><title>Mechanism of CO sub(2) Fixation by Ir super(I)-X Bonds (X = OH, OR, N, C)</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Vummaleti, Sai Vikrama Chaitanya ; Talarico, Giovanni ; Nolan, Steven P ; Cavallo, Luigi ; Poater, Albert</creator><creatorcontrib>Vummaleti, Sai Vikrama Chaitanya ; Talarico, Giovanni ; Nolan, Steven P ; Cavallo, Luigi ; Poater, Albert</creatorcontrib><description>Density functional theory calculations have been used to investigate the CO sub(2) fixation mechanism proposed by Nolan et al. for the Ir super(I) complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO sub(2) insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO sub(2) insertion into the Ir-OR super(1) (R super(1) = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. We report the DFT-based investigation of the mechanism of CO sub(2) insertion into Ir super(I)-C and Ir super(I)-heteroatom bonds (such as Ir-N and Ir-O). The calculated barriers show that CO sub(2) insertion is the rate-limiting step, in accordance with experimental results.</description><identifier>ISSN: 1434-1948</identifier><identifier>EISSN: 1099-0682</identifier><identifier>DOI: 10.1002/ejic.201500905</identifier><language>eng</language><subject>Carbon capture and storage ; Carbon dioxide ; Density functional theory ; Derivatives ; Fixation ; Insertion ; Mathematical analysis ; Phenyls</subject><ispartof>European journal of inorganic chemistry, 2015-10, Vol.2015 (28), p.4653-4657</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Vummaleti, Sai Vikrama Chaitanya</creatorcontrib><creatorcontrib>Talarico, Giovanni</creatorcontrib><creatorcontrib>Nolan, Steven P</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Poater, Albert</creatorcontrib><title>Mechanism of CO sub(2) Fixation by Ir super(I)-X Bonds (X = OH, OR, N, C)</title><title>European journal of inorganic chemistry</title><description>Density functional theory calculations have been used to investigate the CO sub(2) fixation mechanism proposed by Nolan et al. for the Ir super(I) complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO sub(2) insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO sub(2) insertion into the Ir-OR super(1) (R super(1) = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. We report the DFT-based investigation of the mechanism of CO sub(2) insertion into Ir super(I)-C and Ir super(I)-heteroatom bonds (such as Ir-N and Ir-O). The calculated barriers show that CO sub(2) insertion is the rate-limiting step, in accordance with experimental results.</description><subject>Carbon capture and storage</subject><subject>Carbon dioxide</subject><subject>Density functional theory</subject><subject>Derivatives</subject><subject>Fixation</subject><subject>Insertion</subject><subject>Mathematical analysis</subject><subject>Phenyls</subject><issn>1434-1948</issn><issn>1099-0682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqVik0LgkAUAJco6PPa-R0VtN7uqumhS1LooYTo0C3MNtowt3wJ9e_r0B_oNMMwjI05TjiimKqrLiYCuY8Yod9iPY5R5GIQivbXPem5PPLCLusTXRFRogx6LF2r4pJXmm5gzhBnQM3REjas9Ct_alPB8Q1p_a13VVup7e5hYaoTgbWHOWSJA9nWgY0DsT1knXNekhr9OGDWarmLE_dem0ej6Hm4aSpUWeaVMg0d-CwMeOCjkPKP9QMPuUFx</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Vummaleti, Sai Vikrama Chaitanya</creator><creator>Talarico, Giovanni</creator><creator>Nolan, Steven P</creator><creator>Cavallo, Luigi</creator><creator>Poater, Albert</creator><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151001</creationdate><title>Mechanism of CO sub(2) Fixation by Ir super(I)-X Bonds (X = OH, OR, N, C)</title><author>Vummaleti, Sai Vikrama Chaitanya ; Talarico, Giovanni ; Nolan, Steven P ; Cavallo, Luigi ; Poater, Albert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_17861650233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Carbon capture and storage</topic><topic>Carbon dioxide</topic><topic>Density functional theory</topic><topic>Derivatives</topic><topic>Fixation</topic><topic>Insertion</topic><topic>Mathematical analysis</topic><topic>Phenyls</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vummaleti, Sai Vikrama Chaitanya</creatorcontrib><creatorcontrib>Talarico, Giovanni</creatorcontrib><creatorcontrib>Nolan, Steven P</creatorcontrib><creatorcontrib>Cavallo, Luigi</creatorcontrib><creatorcontrib>Poater, Albert</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>European journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vummaleti, Sai Vikrama Chaitanya</au><au>Talarico, Giovanni</au><au>Nolan, Steven P</au><au>Cavallo, Luigi</au><au>Poater, Albert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism of CO sub(2) Fixation by Ir super(I)-X Bonds (X = OH, OR, N, C)</atitle><jtitle>European journal of inorganic chemistry</jtitle><date>2015-10-01</date><risdate>2015</risdate><volume>2015</volume><issue>28</issue><spage>4653</spage><epage>4657</epage><pages>4653-4657</pages><issn>1434-1948</issn><eissn>1099-0682</eissn><abstract>Density functional theory calculations have been used to investigate the CO sub(2) fixation mechanism proposed by Nolan et al. for the Ir super(I) complex [Ir(cod)(IiPr)(OH)] (1; cod = 1,5-cyclooctadiene; IiPr = 1,3-diisopropylimidazol-2-ylidene) and its derivatives. For 1, our results suggest that CO sub(2) insertion is the rate-limiting step rather than the dimerization step. Additionally, in agreement with the experimental results, our results show that CO sub(2) insertion into the Ir-OR super(1) (R super(1) = H, methyl, and phenyl) and Ir-N bonds is kinetically facile, and the calculated activation energies span a range of only 12.0-23.0 kcal/mol. Substantially higher values (35.0-50.0 kcal/mol) are reported for analogous Ir-C bonds. We report the DFT-based investigation of the mechanism of CO sub(2) insertion into Ir super(I)-C and Ir super(I)-heteroatom bonds (such as Ir-N and Ir-O). The calculated barriers show that CO sub(2) insertion is the rate-limiting step, in accordance with experimental results.</abstract><doi>10.1002/ejic.201500905</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-1948 |
ispartof | European journal of inorganic chemistry, 2015-10, Vol.2015 (28), p.4653-4657 |
issn | 1434-1948 1099-0682 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786165023 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Carbon capture and storage Carbon dioxide Density functional theory Derivatives Fixation Insertion Mathematical analysis Phenyls |
title | Mechanism of CO sub(2) Fixation by Ir super(I)-X Bonds (X = OH, OR, N, C) |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20of%20CO%20sub(2)%20Fixation%20by%20Ir%20super(I)-X%20Bonds%20(X%20=%20OH,%20OR,%20N,%20C)&rft.jtitle=European%20journal%20of%20inorganic%20chemistry&rft.au=Vummaleti,%20Sai%20Vikrama%20Chaitanya&rft.date=2015-10-01&rft.volume=2015&rft.issue=28&rft.spage=4653&rft.epage=4657&rft.pages=4653-4657&rft.issn=1434-1948&rft.eissn=1099-0682&rft_id=info:doi/10.1002/ejic.201500905&rft_dat=%3Cproquest%3E1786165023%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_17861650233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786165023&rft_id=info:pmid/&rfr_iscdi=true |