Loading…

A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing

This work is focused on the fabrication of a human breathing sensor based on the in situ synthesis of silver nanoparticles (Ag-NPs) inside a polymeric coating previously deposited on an optical fiber core by means of the Layer-by-Layer self-assembly. The Ag-NPs were created using a synthesis protoco...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2013-10, Vol.187, p.40-44
Main Authors: Rivero, Pedro J., Urrutia, A., Goicoechea, J., Matias, I.R., Arregui, F.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-5f5007f6ec98c1eb7983bc7b25f24a7d7cdca9b4da5cce456a7e22bea524adea3
cites cdi_FETCH-LOGICAL-c354t-5f5007f6ec98c1eb7983bc7b25f24a7d7cdca9b4da5cce456a7e22bea524adea3
container_end_page 44
container_issue
container_start_page 40
container_title Sensors and actuators. B, Chemical
container_volume 187
creator Rivero, Pedro J.
Urrutia, A.
Goicoechea, J.
Matias, I.R.
Arregui, F.J.
description This work is focused on the fabrication of a human breathing sensor based on the in situ synthesis of silver nanoparticles (Ag-NPs) inside a polymeric coating previously deposited on an optical fiber core by means of the Layer-by-Layer self-assembly. The Ag-NPs were created using a synthesis protocol consisting of a loading step of the Ag+ cations into the polymeric film and a further reduction step using dimethylamine borane (DMAB). The morphology and distribution of the Ag-NPs inside the polymeric coating have been studied using atomic force microscopy (AFM). Furthermore, UV–VIS spectroscopy and energy dispersive X-ray (EDX) were also used to confirm the synthesis of the Ag-NPs within the resultant coating. The amount of Ag-NPs increases when the number of loading/reduction cycles is higher. Therefore the incorporation of the Ag-NPs affects the refractive index of the overlay promoting the observation of a resonant attenuation band in the infrared region (NIR), known as Lossy Mode Resonance (LMR), which can be used as a sensing signal to monitor the human breathing. The quality of the device has been experimentally tested with good sensitivity (0.455nm per RH%) and fast response time (692ms and 839ms for rise/fall).
doi_str_mv 10.1016/j.snb.2012.09.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786166049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400512009343</els_id><sourcerecordid>1786166049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-5f5007f6ec98c1eb7983bc7b25f24a7d7cdca9b4da5cce456a7e22bea524adea3</originalsourceid><addsrcrecordid>eNp9kE1P5DAMhiMEEgPsD9jT5silxUmbZqo9IbQfSIOQ2OUcpYkLGaXNEHeQ-Peb0eyZk2X5eS37YeyrgFqA6G62Nc1DLUHIGvoapDxhK7HWTdWA1qdsBb1UVQugztkF0RYA2qaDFYu3fJOIPvhD8sifkNJsZ4c87ZbgbOSEM6XM9xTmF04hvmPmhUg7mwsQkaqYrEfPxxAn4mNhpzSHJeVD4HU_2ZkPGe3yWvordjbaSPjlf71kzz9__L37XW0ef93f3W4q16h2qdSoAPTYoevXTuCg-3UzOD1INcrWaq-dd7YfWm-Vc9iqzmqUckCrytijbS7Z9XHvLqe3PdJipkAOY7Qzpj0Zoded6Dpo-4KKI-py0ZBxNLscJps_jABzMGu2ppg1B7MGelPMlsy3Y2a0ydiXHMg8_ylAuVoILfWB-H4ksHz5HjAbcgGLVx8yusX4FD7Z_w_4UI1p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786166049</pqid></control><display><type>article</type><title>A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing</title><source>ScienceDirect Journals</source><creator>Rivero, Pedro J. ; Urrutia, A. ; Goicoechea, J. ; Matias, I.R. ; Arregui, F.J.</creator><creatorcontrib>Rivero, Pedro J. ; Urrutia, A. ; Goicoechea, J. ; Matias, I.R. ; Arregui, F.J.</creatorcontrib><description>This work is focused on the fabrication of a human breathing sensor based on the in situ synthesis of silver nanoparticles (Ag-NPs) inside a polymeric coating previously deposited on an optical fiber core by means of the Layer-by-Layer self-assembly. The Ag-NPs were created using a synthesis protocol consisting of a loading step of the Ag+ cations into the polymeric film and a further reduction step using dimethylamine borane (DMAB). The morphology and distribution of the Ag-NPs inside the polymeric coating have been studied using atomic force microscopy (AFM). Furthermore, UV–VIS spectroscopy and energy dispersive X-ray (EDX) were also used to confirm the synthesis of the Ag-NPs within the resultant coating. The amount of Ag-NPs increases when the number of loading/reduction cycles is higher. Therefore the incorporation of the Ag-NPs affects the refractive index of the overlay promoting the observation of a resonant attenuation band in the infrared region (NIR), known as Lossy Mode Resonance (LMR), which can be used as a sensing signal to monitor the human breathing. The quality of the device has been experimentally tested with good sensitivity (0.455nm per RH%) and fast response time (692ms and 839ms for rise/fall).</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2012.09.022</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>atomic force microscopy ; Breathing ; cations ; Coating ; coatings ; dimethylamine ; energy ; energy-dispersive X-ray analysis ; Human ; humans ; Humidity sensing ; Lossy Mode Resonances (LMR) ; monitoring ; nanosilver ; Reduction ; refractive index ; Self assembly ; Sensors ; Silver ; Silver nanoparticles (Ag-NPs) ; spectroscopy ; Synthesis ; X-radiation</subject><ispartof>Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.40-44</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-5f5007f6ec98c1eb7983bc7b25f24a7d7cdca9b4da5cce456a7e22bea524adea3</citedby><cites>FETCH-LOGICAL-c354t-5f5007f6ec98c1eb7983bc7b25f24a7d7cdca9b4da5cce456a7e22bea524adea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Rivero, Pedro J.</creatorcontrib><creatorcontrib>Urrutia, A.</creatorcontrib><creatorcontrib>Goicoechea, J.</creatorcontrib><creatorcontrib>Matias, I.R.</creatorcontrib><creatorcontrib>Arregui, F.J.</creatorcontrib><title>A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing</title><title>Sensors and actuators. B, Chemical</title><description>This work is focused on the fabrication of a human breathing sensor based on the in situ synthesis of silver nanoparticles (Ag-NPs) inside a polymeric coating previously deposited on an optical fiber core by means of the Layer-by-Layer self-assembly. The Ag-NPs were created using a synthesis protocol consisting of a loading step of the Ag+ cations into the polymeric film and a further reduction step using dimethylamine borane (DMAB). The morphology and distribution of the Ag-NPs inside the polymeric coating have been studied using atomic force microscopy (AFM). Furthermore, UV–VIS spectroscopy and energy dispersive X-ray (EDX) were also used to confirm the synthesis of the Ag-NPs within the resultant coating. The amount of Ag-NPs increases when the number of loading/reduction cycles is higher. Therefore the incorporation of the Ag-NPs affects the refractive index of the overlay promoting the observation of a resonant attenuation band in the infrared region (NIR), known as Lossy Mode Resonance (LMR), which can be used as a sensing signal to monitor the human breathing. The quality of the device has been experimentally tested with good sensitivity (0.455nm per RH%) and fast response time (692ms and 839ms for rise/fall).</description><subject>atomic force microscopy</subject><subject>Breathing</subject><subject>cations</subject><subject>Coating</subject><subject>coatings</subject><subject>dimethylamine</subject><subject>energy</subject><subject>energy-dispersive X-ray analysis</subject><subject>Human</subject><subject>humans</subject><subject>Humidity sensing</subject><subject>Lossy Mode Resonances (LMR)</subject><subject>monitoring</subject><subject>nanosilver</subject><subject>Reduction</subject><subject>refractive index</subject><subject>Self assembly</subject><subject>Sensors</subject><subject>Silver</subject><subject>Silver nanoparticles (Ag-NPs)</subject><subject>spectroscopy</subject><subject>Synthesis</subject><subject>X-radiation</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kE1P5DAMhiMEEgPsD9jT5silxUmbZqo9IbQfSIOQ2OUcpYkLGaXNEHeQ-Peb0eyZk2X5eS37YeyrgFqA6G62Nc1DLUHIGvoapDxhK7HWTdWA1qdsBb1UVQugztkF0RYA2qaDFYu3fJOIPvhD8sifkNJsZ4c87ZbgbOSEM6XM9xTmF04hvmPmhUg7mwsQkaqYrEfPxxAn4mNhpzSHJeVD4HU_2ZkPGe3yWvordjbaSPjlf71kzz9__L37XW0ef93f3W4q16h2qdSoAPTYoevXTuCg-3UzOD1INcrWaq-dd7YfWm-Vc9iqzmqUckCrytijbS7Z9XHvLqe3PdJipkAOY7Qzpj0Zoded6Dpo-4KKI-py0ZBxNLscJps_jABzMGu2ppg1B7MGelPMlsy3Y2a0ydiXHMg8_ylAuVoILfWB-H4ksHz5HjAbcgGLVx8yusX4FD7Z_w_4UI1p</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Rivero, Pedro J.</creator><creator>Urrutia, A.</creator><creator>Goicoechea, J.</creator><creator>Matias, I.R.</creator><creator>Arregui, F.J.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing</title><author>Rivero, Pedro J. ; Urrutia, A. ; Goicoechea, J. ; Matias, I.R. ; Arregui, F.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-5f5007f6ec98c1eb7983bc7b25f24a7d7cdca9b4da5cce456a7e22bea524adea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>atomic force microscopy</topic><topic>Breathing</topic><topic>cations</topic><topic>Coating</topic><topic>coatings</topic><topic>dimethylamine</topic><topic>energy</topic><topic>energy-dispersive X-ray analysis</topic><topic>Human</topic><topic>humans</topic><topic>Humidity sensing</topic><topic>Lossy Mode Resonances (LMR)</topic><topic>monitoring</topic><topic>nanosilver</topic><topic>Reduction</topic><topic>refractive index</topic><topic>Self assembly</topic><topic>Sensors</topic><topic>Silver</topic><topic>Silver nanoparticles (Ag-NPs)</topic><topic>spectroscopy</topic><topic>Synthesis</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rivero, Pedro J.</creatorcontrib><creatorcontrib>Urrutia, A.</creatorcontrib><creatorcontrib>Goicoechea, J.</creatorcontrib><creatorcontrib>Matias, I.R.</creatorcontrib><creatorcontrib>Arregui, F.J.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rivero, Pedro J.</au><au>Urrutia, A.</au><au>Goicoechea, J.</au><au>Matias, I.R.</au><au>Arregui, F.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>187</volume><spage>40</spage><epage>44</epage><pages>40-44</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>This work is focused on the fabrication of a human breathing sensor based on the in situ synthesis of silver nanoparticles (Ag-NPs) inside a polymeric coating previously deposited on an optical fiber core by means of the Layer-by-Layer self-assembly. The Ag-NPs were created using a synthesis protocol consisting of a loading step of the Ag+ cations into the polymeric film and a further reduction step using dimethylamine borane (DMAB). The morphology and distribution of the Ag-NPs inside the polymeric coating have been studied using atomic force microscopy (AFM). Furthermore, UV–VIS spectroscopy and energy dispersive X-ray (EDX) were also used to confirm the synthesis of the Ag-NPs within the resultant coating. The amount of Ag-NPs increases when the number of loading/reduction cycles is higher. Therefore the incorporation of the Ag-NPs affects the refractive index of the overlay promoting the observation of a resonant attenuation band in the infrared region (NIR), known as Lossy Mode Resonance (LMR), which can be used as a sensing signal to monitor the human breathing. The quality of the device has been experimentally tested with good sensitivity (0.455nm per RH%) and fast response time (692ms and 839ms for rise/fall).</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2012.09.022</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.40-44
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1786166049
source ScienceDirect Journals
subjects atomic force microscopy
Breathing
cations
Coating
coatings
dimethylamine
energy
energy-dispersive X-ray analysis
Human
humans
Humidity sensing
Lossy Mode Resonances (LMR)
monitoring
nanosilver
Reduction
refractive index
Self assembly
Sensors
Silver
Silver nanoparticles (Ag-NPs)
spectroscopy
Synthesis
X-radiation
title A Lossy Mode Resonance optical sensor using silver nanoparticles-loaded films for monitoring human breathing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T01%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lossy%20Mode%20Resonance%20optical%20sensor%20using%20silver%20nanoparticles-loaded%20films%20for%20monitoring%20human%20breathing&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Rivero,%20Pedro%20J.&rft.date=2013-10-01&rft.volume=187&rft.spage=40&rft.epage=44&rft.pages=40-44&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2012.09.022&rft_dat=%3Cproquest_cross%3E1786166049%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-5f5007f6ec98c1eb7983bc7b25f24a7d7cdca9b4da5cce456a7e22bea524adea3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786166049&rft_id=info:pmid/&rfr_iscdi=true