Loading…

Gas sensing properties of novel CuO nanowire devices

We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductome...

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2013-10, Vol.187, p.50-57
Main Authors: Steinhauer, S., Brunet, E., Maier, T., Mutinati, G.C., Köck, A., Freudenberg, O., Gspan, C., Grogger, W., Neuhold, A., Resel, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3
cites cdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3
container_end_page 57
container_issue
container_start_page 50
container_title Sensors and actuators. B, Chemical
container_volume 187
creator Steinhauer, S.
Brunet, E.
Maier, T.
Mutinati, G.C.
Köck, A.
Freudenberg, O.
Gspan, C.
Grogger, W.
Neuhold, A.
Resel, R.
description We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device.
doi_str_mv 10.1016/j.snb.2012.09.034
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786167142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092540051200946X</els_id><sourcerecordid>1786167142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA5jIyJJwFztxLCZUQUGq1AE6W45zqVylSbHTIv49RmFmuuV7T-8-xm4RMgQsH3ZZ6OssB8wzUBlwccZmWEmecpDynM1A5UUqAIpLdhXCDgAEL2HGxNKEJFAfXL9NDn44kB8dhWRok344UZcsjuukN_3w5TwlDZ2cpXDNLlrTBbr5u3O2eXn-WLymq_XybfG0Si1XOKa8qIU0itBKJZDnqsG6aksuTKVI8EZYJIm8QaiVUhJqUA0ZwQuohSnLhs_Z_dQbh30eKYx674KlrjM9DcegUVYllhJFHlGcUOuHEDy1-uDd3vhvjaB_Demdjob0ryENSkdDMXM3ZVozaLP1LujNewQKAESZV1UkHieC4pcnR14H66i31EQbdtTN4P7p_wEIQnXa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786167142</pqid></control><display><type>article</type><title>Gas sensing properties of novel CuO nanowire devices</title><source>ScienceDirect Journals</source><creator>Steinhauer, S. ; Brunet, E. ; Maier, T. ; Mutinati, G.C. ; Köck, A. ; Freudenberg, O. ; Gspan, C. ; Grogger, W. ; Neuhold, A. ; Resel, R.</creator><creatorcontrib>Steinhauer, S. ; Brunet, E. ; Maier, T. ; Mutinati, G.C. ; Köck, A. ; Freudenberg, O. ; Gspan, C. ; Grogger, W. ; Neuhold, A. ; Resel, R.</creatorcontrib><description>We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2012.09.034</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Actuators ; Carbon monoxide ; CO detection ; CuO nanowire ; Devices ; Diffraction ; Electric bridges ; energy ; Gas sensor ; Gas sensors ; H2S detection ; humidity ; hydrogen sulfide ; Nanowires ; On-chip synthesis ; oxidation ; Oxides ; silicon ; spectroscopy ; temperature ; transmission electron microscopy ; X-ray diffraction</subject><ispartof>Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.50-57</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</citedby><cites>FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Steinhauer, S.</creatorcontrib><creatorcontrib>Brunet, E.</creatorcontrib><creatorcontrib>Maier, T.</creatorcontrib><creatorcontrib>Mutinati, G.C.</creatorcontrib><creatorcontrib>Köck, A.</creatorcontrib><creatorcontrib>Freudenberg, O.</creatorcontrib><creatorcontrib>Gspan, C.</creatorcontrib><creatorcontrib>Grogger, W.</creatorcontrib><creatorcontrib>Neuhold, A.</creatorcontrib><creatorcontrib>Resel, R.</creatorcontrib><title>Gas sensing properties of novel CuO nanowire devices</title><title>Sensors and actuators. B, Chemical</title><description>We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device.</description><subject>Actuators</subject><subject>Carbon monoxide</subject><subject>CO detection</subject><subject>CuO nanowire</subject><subject>Devices</subject><subject>Diffraction</subject><subject>Electric bridges</subject><subject>energy</subject><subject>Gas sensor</subject><subject>Gas sensors</subject><subject>H2S detection</subject><subject>humidity</subject><subject>hydrogen sulfide</subject><subject>Nanowires</subject><subject>On-chip synthesis</subject><subject>oxidation</subject><subject>Oxides</subject><subject>silicon</subject><subject>spectroscopy</subject><subject>temperature</subject><subject>transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA5jIyJJwFztxLCZUQUGq1AE6W45zqVylSbHTIv49RmFmuuV7T-8-xm4RMgQsH3ZZ6OssB8wzUBlwccZmWEmecpDynM1A5UUqAIpLdhXCDgAEL2HGxNKEJFAfXL9NDn44kB8dhWRok344UZcsjuukN_3w5TwlDZ2cpXDNLlrTBbr5u3O2eXn-WLymq_XybfG0Si1XOKa8qIU0itBKJZDnqsG6aksuTKVI8EZYJIm8QaiVUhJqUA0ZwQuohSnLhs_Z_dQbh30eKYx674KlrjM9DcegUVYllhJFHlGcUOuHEDy1-uDd3vhvjaB_Demdjob0ryENSkdDMXM3ZVozaLP1LujNewQKAESZV1UkHieC4pcnR14H66i31EQbdtTN4P7p_wEIQnXa</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Steinhauer, S.</creator><creator>Brunet, E.</creator><creator>Maier, T.</creator><creator>Mutinati, G.C.</creator><creator>Köck, A.</creator><creator>Freudenberg, O.</creator><creator>Gspan, C.</creator><creator>Grogger, W.</creator><creator>Neuhold, A.</creator><creator>Resel, R.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Gas sensing properties of novel CuO nanowire devices</title><author>Steinhauer, S. ; Brunet, E. ; Maier, T. ; Mutinati, G.C. ; Köck, A. ; Freudenberg, O. ; Gspan, C. ; Grogger, W. ; Neuhold, A. ; Resel, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actuators</topic><topic>Carbon monoxide</topic><topic>CO detection</topic><topic>CuO nanowire</topic><topic>Devices</topic><topic>Diffraction</topic><topic>Electric bridges</topic><topic>energy</topic><topic>Gas sensor</topic><topic>Gas sensors</topic><topic>H2S detection</topic><topic>humidity</topic><topic>hydrogen sulfide</topic><topic>Nanowires</topic><topic>On-chip synthesis</topic><topic>oxidation</topic><topic>Oxides</topic><topic>silicon</topic><topic>spectroscopy</topic><topic>temperature</topic><topic>transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinhauer, S.</creatorcontrib><creatorcontrib>Brunet, E.</creatorcontrib><creatorcontrib>Maier, T.</creatorcontrib><creatorcontrib>Mutinati, G.C.</creatorcontrib><creatorcontrib>Köck, A.</creatorcontrib><creatorcontrib>Freudenberg, O.</creatorcontrib><creatorcontrib>Gspan, C.</creatorcontrib><creatorcontrib>Grogger, W.</creatorcontrib><creatorcontrib>Neuhold, A.</creatorcontrib><creatorcontrib>Resel, R.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinhauer, S.</au><au>Brunet, E.</au><au>Maier, T.</au><au>Mutinati, G.C.</au><au>Köck, A.</au><au>Freudenberg, O.</au><au>Gspan, C.</au><au>Grogger, W.</au><au>Neuhold, A.</au><au>Resel, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas sensing properties of novel CuO nanowire devices</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>187</volume><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2012.09.034</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.50-57
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_miscellaneous_1786167142
source ScienceDirect Journals
subjects Actuators
Carbon monoxide
CO detection
CuO nanowire
Devices
Diffraction
Electric bridges
energy
Gas sensor
Gas sensors
H2S detection
humidity
hydrogen sulfide
Nanowires
On-chip synthesis
oxidation
Oxides
silicon
spectroscopy
temperature
transmission electron microscopy
X-ray diffraction
title Gas sensing properties of novel CuO nanowire devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20sensing%20properties%20of%20novel%20CuO%20nanowire%20devices&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Steinhauer,%20S.&rft.date=2013-10-01&rft.volume=187&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2012.09.034&rft_dat=%3Cproquest_cross%3E1786167142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786167142&rft_id=info:pmid/&rfr_iscdi=true