Loading…
Gas sensing properties of novel CuO nanowire devices
We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductome...
Saved in:
Published in: | Sensors and actuators. B, Chemical Chemical, 2013-10, Vol.187, p.50-57 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3 |
container_end_page | 57 |
container_issue | |
container_start_page | 50 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 187 |
creator | Steinhauer, S. Brunet, E. Maier, T. Mutinati, G.C. Köck, A. Freudenberg, O. Gspan, C. Grogger, W. Neuhold, A. Resel, R. |
description | We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device. |
doi_str_mv | 10.1016/j.snb.2012.09.034 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786167142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S092540051200946X</els_id><sourcerecordid>1786167142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwA5jIyJJwFztxLCZUQUGq1AE6W45zqVylSbHTIv49RmFmuuV7T-8-xm4RMgQsH3ZZ6OssB8wzUBlwccZmWEmecpDynM1A5UUqAIpLdhXCDgAEL2HGxNKEJFAfXL9NDn44kB8dhWRok344UZcsjuukN_3w5TwlDZ2cpXDNLlrTBbr5u3O2eXn-WLymq_XybfG0Si1XOKa8qIU0itBKJZDnqsG6aksuTKVI8EZYJIm8QaiVUhJqUA0ZwQuohSnLhs_Z_dQbh30eKYx674KlrjM9DcegUVYllhJFHlGcUOuHEDy1-uDd3vhvjaB_Demdjob0ryENSkdDMXM3ZVozaLP1LujNewQKAESZV1UkHieC4pcnR14H66i31EQbdtTN4P7p_wEIQnXa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786167142</pqid></control><display><type>article</type><title>Gas sensing properties of novel CuO nanowire devices</title><source>ScienceDirect Journals</source><creator>Steinhauer, S. ; Brunet, E. ; Maier, T. ; Mutinati, G.C. ; Köck, A. ; Freudenberg, O. ; Gspan, C. ; Grogger, W. ; Neuhold, A. ; Resel, R.</creator><creatorcontrib>Steinhauer, S. ; Brunet, E. ; Maier, T. ; Mutinati, G.C. ; Köck, A. ; Freudenberg, O. ; Gspan, C. ; Grogger, W. ; Neuhold, A. ; Resel, R.</creatorcontrib><description>We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2012.09.034</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Actuators ; Carbon monoxide ; CO detection ; CuO nanowire ; Devices ; Diffraction ; Electric bridges ; energy ; Gas sensor ; Gas sensors ; H2S detection ; humidity ; hydrogen sulfide ; Nanowires ; On-chip synthesis ; oxidation ; Oxides ; silicon ; spectroscopy ; temperature ; transmission electron microscopy ; X-ray diffraction</subject><ispartof>Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.50-57</ispartof><rights>2012 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</citedby><cites>FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Steinhauer, S.</creatorcontrib><creatorcontrib>Brunet, E.</creatorcontrib><creatorcontrib>Maier, T.</creatorcontrib><creatorcontrib>Mutinati, G.C.</creatorcontrib><creatorcontrib>Köck, A.</creatorcontrib><creatorcontrib>Freudenberg, O.</creatorcontrib><creatorcontrib>Gspan, C.</creatorcontrib><creatorcontrib>Grogger, W.</creatorcontrib><creatorcontrib>Neuhold, A.</creatorcontrib><creatorcontrib>Resel, R.</creatorcontrib><title>Gas sensing properties of novel CuO nanowire devices</title><title>Sensors and actuators. B, Chemical</title><description>We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device.</description><subject>Actuators</subject><subject>Carbon monoxide</subject><subject>CO detection</subject><subject>CuO nanowire</subject><subject>Devices</subject><subject>Diffraction</subject><subject>Electric bridges</subject><subject>energy</subject><subject>Gas sensor</subject><subject>Gas sensors</subject><subject>H2S detection</subject><subject>humidity</subject><subject>hydrogen sulfide</subject><subject>Nanowires</subject><subject>On-chip synthesis</subject><subject>oxidation</subject><subject>Oxides</subject><subject>silicon</subject><subject>spectroscopy</subject><subject>temperature</subject><subject>transmission electron microscopy</subject><subject>X-ray diffraction</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwA5jIyJJwFztxLCZUQUGq1AE6W45zqVylSbHTIv49RmFmuuV7T-8-xm4RMgQsH3ZZ6OssB8wzUBlwccZmWEmecpDynM1A5UUqAIpLdhXCDgAEL2HGxNKEJFAfXL9NDn44kB8dhWRok344UZcsjuukN_3w5TwlDZ2cpXDNLlrTBbr5u3O2eXn-WLymq_XybfG0Si1XOKa8qIU0itBKJZDnqsG6aksuTKVI8EZYJIm8QaiVUhJqUA0ZwQuohSnLhs_Z_dQbh30eKYx674KlrjM9DcegUVYllhJFHlGcUOuHEDy1-uDd3vhvjaB_Demdjob0ryENSkdDMXM3ZVozaLP1LujNewQKAESZV1UkHieC4pcnR14H66i31EQbdtTN4P7p_wEIQnXa</recordid><startdate>20131001</startdate><enddate>20131001</enddate><creator>Steinhauer, S.</creator><creator>Brunet, E.</creator><creator>Maier, T.</creator><creator>Mutinati, G.C.</creator><creator>Köck, A.</creator><creator>Freudenberg, O.</creator><creator>Gspan, C.</creator><creator>Grogger, W.</creator><creator>Neuhold, A.</creator><creator>Resel, R.</creator><general>Elsevier B.V</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131001</creationdate><title>Gas sensing properties of novel CuO nanowire devices</title><author>Steinhauer, S. ; Brunet, E. ; Maier, T. ; Mutinati, G.C. ; Köck, A. ; Freudenberg, O. ; Gspan, C. ; Grogger, W. ; Neuhold, A. ; Resel, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Actuators</topic><topic>Carbon monoxide</topic><topic>CO detection</topic><topic>CuO nanowire</topic><topic>Devices</topic><topic>Diffraction</topic><topic>Electric bridges</topic><topic>energy</topic><topic>Gas sensor</topic><topic>Gas sensors</topic><topic>H2S detection</topic><topic>humidity</topic><topic>hydrogen sulfide</topic><topic>Nanowires</topic><topic>On-chip synthesis</topic><topic>oxidation</topic><topic>Oxides</topic><topic>silicon</topic><topic>spectroscopy</topic><topic>temperature</topic><topic>transmission electron microscopy</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinhauer, S.</creatorcontrib><creatorcontrib>Brunet, E.</creatorcontrib><creatorcontrib>Maier, T.</creatorcontrib><creatorcontrib>Mutinati, G.C.</creatorcontrib><creatorcontrib>Köck, A.</creatorcontrib><creatorcontrib>Freudenberg, O.</creatorcontrib><creatorcontrib>Gspan, C.</creatorcontrib><creatorcontrib>Grogger, W.</creatorcontrib><creatorcontrib>Neuhold, A.</creatorcontrib><creatorcontrib>Resel, R.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinhauer, S.</au><au>Brunet, E.</au><au>Maier, T.</au><au>Mutinati, G.C.</au><au>Köck, A.</au><au>Freudenberg, O.</au><au>Gspan, C.</au><au>Grogger, W.</au><au>Neuhold, A.</au><au>Resel, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas sensing properties of novel CuO nanowire devices</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2013-10-01</date><risdate>2013</risdate><volume>187</volume><spage>50</spage><epage>57</epage><pages>50-57</pages><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>We report on novel gas sensing devices based on cupric oxide (CuO) nanowires which are synthesized on-chip by thermal oxidation of electroplated copper microstructures. This technique enables the direct integration of a multitude of CuO nanowires, which bridge the electrical contacts of a conductometric gas sensor. The CuO nanowire bridges exhibit a huge surface-to-volume ratio and are entirely surrounded by the gas atmosphere, which is a highly favorable gas sensor configuration. As a result, the CuO nanowire gas sensor devices are able to detect carbon monoxide (CO) down to a concentration of 10ppm and exhibit extraordinary sensitivity to hydrogen sulfide (H2S) where concentrations down to 10ppb have been detected, even in the presence of humidity. For characterization of the CuO nanowires, X-ray diffraction measurements, transmission electron microscopy and electron energy loss spectroscopy are employed. As no process temperatures higher than 400°C are required for the fabrication of the CuO nanowire devices, our approach can be employed in a CMOS backend process enabling the realization of a fully silicon integrated CuO nanowire gas sensing device.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2012.09.034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2013-10, Vol.187, p.50-57 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786167142 |
source | ScienceDirect Journals |
subjects | Actuators Carbon monoxide CO detection CuO nanowire Devices Diffraction Electric bridges energy Gas sensor Gas sensors H2S detection humidity hydrogen sulfide Nanowires On-chip synthesis oxidation Oxides silicon spectroscopy temperature transmission electron microscopy X-ray diffraction |
title | Gas sensing properties of novel CuO nanowire devices |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T17%3A30%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20sensing%20properties%20of%20novel%20CuO%20nanowire%20devices&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Steinhauer,%20S.&rft.date=2013-10-01&rft.volume=187&rft.spage=50&rft.epage=57&rft.pages=50-57&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2012.09.034&rft_dat=%3Cproquest_cross%3E1786167142%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c391t-35b47a9e1c7941329d1b8f634a89e43d4c1e713d10b99970b09dea4350b4a66d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786167142&rft_id=info:pmid/&rfr_iscdi=true |