Loading…

Large-scale arrays of nanomechanical sensors for biomolecular fingerprinting

A review of activities involving the development of large arrays of nanomechanical resonators is presented. This review includes demonstration of the use of these arrays for the detection of biological targets. Both top-down and bottom-up approaches to the realization of such arrays were developed....

Full description

Saved in:
Bibliographic Details
Published in:Sensors and actuators. B, Chemical Chemical, 2013-10, Vol.187, p.111-117
Main Authors: Guthy, C., Belov, M., Janzen, A., Quitoriano, N.J., Singh, A., Wright, V.A., Finley, E., Kamins, T.I., Evoy, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A review of activities involving the development of large arrays of nanomechanical resonators is presented. This review includes demonstration of the use of these arrays for the detection of biological targets. Both top-down and bottom-up approaches to the realization of such arrays were developed. Using a top-down approach, a nanomachining method for the fabrication of large arrays of doubly-clamped silicon carbonitride (SiCN) resonators with width as narrow as 16nm and a yield approaching 100% was developed. The specific detection of protein-A using such resonator arrays functionalized with single domain antibody fragments (sdAb) was also demonstrated with femtogram-level mass sensitivity. A nano-imprinting based fabrication of these resonator arrays was also realized, opening up their potential for cost-effective manufacturing. On a bottom-up approach, resonant silicon nanowires were also produced using directed chemical vapor deposition methods. These bottom-up resonant nanowires were in turn successfully employed for the specific detection of streptavidin with attogram-level mass sensitivity.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2012.09.070