Loading…

ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks

The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and he...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2015-12, Vol.64 (12), p.5563-5574
Main Authors: Silva, Fabricio A., Boukerche, Azzedine, Braga Silva, Thais R. M., Benevenuto, Fabricio, Ruiz, Linnyer B., Loureiro, Antonio A. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023
cites cdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023
container_end_page 5574
container_issue 12
container_start_page 5563
container_title IEEE transactions on vehicular technology
container_volume 64
creator Silva, Fabricio A.
Boukerche, Azzedine
Braga Silva, Thais R. M.
Benevenuto, Fabricio
Ruiz, Linnyer B.
Loureiro, Antonio A. F.
description The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions.
doi_str_mv 10.1109/TVT.2015.2487679
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786173580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7293204</ieee_id><sourcerecordid>3899049281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps9mP7HrT1C8sFqT2GpLtRLemSd1NEP-9W1s8eBqGed7h5SHklMKIUtCXs_lslAAVo4SrVKZ6jwyoZjrWTOh9MgCgKtaCi0Ny5P0yrJxrOiBP03H2guuraOrsm23iMfrONkVn2ya-KTwuoqxtOmy6KFC1Nb-XqGpdNMd3a_q6cNEzdl-t-_DH5KAqao8nuzkkr3e3s-whnkzvH7PrSWxYwrtYGyWF4qjLcgFYqlIkxUKCEFwaRRU3sqwkSJ6WqZCcgUJZFgsUpmIGFCRsSC62f9eu_exD4XxlvcG6Lhpse5_TVEmaMqEgoOf_0GXbuya0C5QAUEIrGSjYUsa13jus8rWzq8J95xTyjd082M03dvOd3RA520YsIv7haaJZApz9AJJVdJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085986</pqid></control><display><type>article</type><title>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</title><source>IEEE Xplore (Online service)</source><creator>Silva, Fabricio A. ; Boukerche, Azzedine ; Braga Silva, Thais R. M. ; Benevenuto, Fabricio ; Ruiz, Linnyer B. ; Loureiro, Antonio A. F.</creator><creatorcontrib>Silva, Fabricio A. ; Boukerche, Azzedine ; Braga Silva, Thais R. M. ; Benevenuto, Fabricio ; Ruiz, Linnyer B. ; Loureiro, Antonio A. F.</creatorcontrib><description>The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2015.2487679</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Connected vehicles ; Consumption ; content availability ; content delivery ; Content distribution networks ; content replication ; Density ; Dynamical systems ; Dynamics ; Mathematical models ; Network topology ; Networks ; replica allocation ; Replication ; Vehicle dynamics ; Vehicular ad hoc networks ; Vehicular networks</subject><ispartof>IEEE transactions on vehicular technology, 2015-12, Vol.64 (12), p.5563-5574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</citedby><cites>FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7293204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Silva, Fabricio A.</creatorcontrib><creatorcontrib>Boukerche, Azzedine</creatorcontrib><creatorcontrib>Braga Silva, Thais R. M.</creatorcontrib><creatorcontrib>Benevenuto, Fabricio</creatorcontrib><creatorcontrib>Ruiz, Linnyer B.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><title>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions.</description><subject>Algorithms</subject><subject>Connected vehicles</subject><subject>Consumption</subject><subject>content availability</subject><subject>content delivery</subject><subject>Content distribution networks</subject><subject>content replication</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical models</subject><subject>Network topology</subject><subject>Networks</subject><subject>replica allocation</subject><subject>Replication</subject><subject>Vehicle dynamics</subject><subject>Vehicular ad hoc networks</subject><subject>Vehicular networks</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps9mP7HrT1C8sFqT2GpLtRLemSd1NEP-9W1s8eBqGed7h5SHklMKIUtCXs_lslAAVo4SrVKZ6jwyoZjrWTOh9MgCgKtaCi0Ny5P0yrJxrOiBP03H2guuraOrsm23iMfrONkVn2ya-KTwuoqxtOmy6KFC1Nb-XqGpdNMd3a_q6cNEzdl-t-_DH5KAqao8nuzkkr3e3s-whnkzvH7PrSWxYwrtYGyWF4qjLcgFYqlIkxUKCEFwaRRU3sqwkSJ6WqZCcgUJZFgsUpmIGFCRsSC62f9eu_exD4XxlvcG6Lhpse5_TVEmaMqEgoOf_0GXbuya0C5QAUEIrGSjYUsa13jus8rWzq8J95xTyjd082M03dvOd3RA520YsIv7haaJZApz9AJJVdJw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Silva, Fabricio A.</creator><creator>Boukerche, Azzedine</creator><creator>Braga Silva, Thais R. M.</creator><creator>Benevenuto, Fabricio</creator><creator>Ruiz, Linnyer B.</creator><creator>Loureiro, Antonio A. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201512</creationdate><title>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</title><author>Silva, Fabricio A. ; Boukerche, Azzedine ; Braga Silva, Thais R. M. ; Benevenuto, Fabricio ; Ruiz, Linnyer B. ; Loureiro, Antonio A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Connected vehicles</topic><topic>Consumption</topic><topic>content availability</topic><topic>content delivery</topic><topic>Content distribution networks</topic><topic>content replication</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical models</topic><topic>Network topology</topic><topic>Networks</topic><topic>replica allocation</topic><topic>Replication</topic><topic>Vehicle dynamics</topic><topic>Vehicular ad hoc networks</topic><topic>Vehicular networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Fabricio A.</creatorcontrib><creatorcontrib>Boukerche, Azzedine</creatorcontrib><creatorcontrib>Braga Silva, Thais R. M.</creatorcontrib><creatorcontrib>Benevenuto, Fabricio</creatorcontrib><creatorcontrib>Ruiz, Linnyer B.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Fabricio A.</au><au>Boukerche, Azzedine</au><au>Braga Silva, Thais R. M.</au><au>Benevenuto, Fabricio</au><au>Ruiz, Linnyer B.</au><au>Loureiro, Antonio A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2015-12</date><risdate>2015</risdate><volume>64</volume><issue>12</issue><spage>5563</spage><epage>5574</epage><pages>5563-5574</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2015.2487679</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2015-12, Vol.64 (12), p.5563-5574
issn 0018-9545
1939-9359
language eng
recordid cdi_proquest_miscellaneous_1786173580
source IEEE Xplore (Online service)
subjects Algorithms
Connected vehicles
Consumption
content availability
content delivery
Content distribution networks
content replication
Density
Dynamical systems
Dynamics
Mathematical models
Network topology
Networks
replica allocation
Replication
Vehicle dynamics
Vehicular ad hoc networks
Vehicular networks
title ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ODCRep:%20Origin-Destination-Based%20Content%20Replication%20for%20Vehicular%20Networks&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Silva,%20Fabricio%20A.&rft.date=2015-12&rft.volume=64&rft.issue=12&rft.spage=5563&rft.epage=5574&rft.pages=5563-5574&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2015.2487679&rft_dat=%3Cproquest_ieee_%3E3899049281%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1750085986&rft_id=info:pmid/&rft_ieee_id=7293204&rfr_iscdi=true