Loading…
ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks
The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and he...
Saved in:
Published in: | IEEE transactions on vehicular technology 2015-12, Vol.64 (12), p.5563-5574 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023 |
---|---|
cites | cdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023 |
container_end_page | 5574 |
container_issue | 12 |
container_start_page | 5563 |
container_title | IEEE transactions on vehicular technology |
container_volume | 64 |
creator | Silva, Fabricio A. Boukerche, Azzedine Braga Silva, Thais R. M. Benevenuto, Fabricio Ruiz, Linnyer B. Loureiro, Antonio A. F. |
description | The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions. |
doi_str_mv | 10.1109/TVT.2015.2487679 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786173580</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7293204</ieee_id><sourcerecordid>3899049281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps9mP7HrT1C8sFqT2GpLtRLemSd1NEP-9W1s8eBqGed7h5SHklMKIUtCXs_lslAAVo4SrVKZ6jwyoZjrWTOh9MgCgKtaCi0Ny5P0yrJxrOiBP03H2guuraOrsm23iMfrONkVn2ya-KTwuoqxtOmy6KFC1Nb-XqGpdNMd3a_q6cNEzdl-t-_DH5KAqao8nuzkkr3e3s-whnkzvH7PrSWxYwrtYGyWF4qjLcgFYqlIkxUKCEFwaRRU3sqwkSJ6WqZCcgUJZFgsUpmIGFCRsSC62f9eu_exD4XxlvcG6Lhpse5_TVEmaMqEgoOf_0GXbuya0C5QAUEIrGSjYUsa13jus8rWzq8J95xTyjd082M03dvOd3RA520YsIv7haaJZApz9AJJVdJw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1750085986</pqid></control><display><type>article</type><title>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</title><source>IEEE Xplore (Online service)</source><creator>Silva, Fabricio A. ; Boukerche, Azzedine ; Braga Silva, Thais R. M. ; Benevenuto, Fabricio ; Ruiz, Linnyer B. ; Loureiro, Antonio A. F.</creator><creatorcontrib>Silva, Fabricio A. ; Boukerche, Azzedine ; Braga Silva, Thais R. M. ; Benevenuto, Fabricio ; Ruiz, Linnyer B. ; Loureiro, Antonio A. F.</creatorcontrib><description>The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2015.2487679</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Connected vehicles ; Consumption ; content availability ; content delivery ; Content distribution networks ; content replication ; Density ; Dynamical systems ; Dynamics ; Mathematical models ; Network topology ; Networks ; replica allocation ; Replication ; Vehicle dynamics ; Vehicular ad hoc networks ; Vehicular networks</subject><ispartof>IEEE transactions on vehicular technology, 2015-12, Vol.64 (12), p.5563-5574</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</citedby><cites>FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7293204$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,54777</link.rule.ids></links><search><creatorcontrib>Silva, Fabricio A.</creatorcontrib><creatorcontrib>Boukerche, Azzedine</creatorcontrib><creatorcontrib>Braga Silva, Thais R. M.</creatorcontrib><creatorcontrib>Benevenuto, Fabricio</creatorcontrib><creatorcontrib>Ruiz, Linnyer B.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><title>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions.</description><subject>Algorithms</subject><subject>Connected vehicles</subject><subject>Consumption</subject><subject>content availability</subject><subject>content delivery</subject><subject>Content distribution networks</subject><subject>content replication</subject><subject>Density</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Mathematical models</subject><subject>Network topology</subject><subject>Networks</subject><subject>replica allocation</subject><subject>Replication</subject><subject>Vehicle dynamics</subject><subject>Vehicular ad hoc networks</subject><subject>Vehicular networks</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFbvgpeAFy-ps9mP7HrT1C8sFqT2GpLtRLemSd1NEP-9W1s8eBqGed7h5SHklMKIUtCXs_lslAAVo4SrVKZ6jwyoZjrWTOh9MgCgKtaCi0Ny5P0yrJxrOiBP03H2guuraOrsm23iMfrONkVn2ya-KTwuoqxtOmy6KFC1Nb-XqGpdNMd3a_q6cNEzdl-t-_DH5KAqao8nuzkkr3e3s-whnkzvH7PrSWxYwrtYGyWF4qjLcgFYqlIkxUKCEFwaRRU3sqwkSJ6WqZCcgUJZFgsUpmIGFCRsSC62f9eu_exD4XxlvcG6Lhpse5_TVEmaMqEgoOf_0GXbuya0C5QAUEIrGSjYUsa13jus8rWzq8J95xTyjd082M03dvOd3RA520YsIv7haaJZApz9AJJVdJw</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Silva, Fabricio A.</creator><creator>Boukerche, Azzedine</creator><creator>Braga Silva, Thais R. M.</creator><creator>Benevenuto, Fabricio</creator><creator>Ruiz, Linnyer B.</creator><creator>Loureiro, Antonio A. F.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201512</creationdate><title>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</title><author>Silva, Fabricio A. ; Boukerche, Azzedine ; Braga Silva, Thais R. M. ; Benevenuto, Fabricio ; Ruiz, Linnyer B. ; Loureiro, Antonio A. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Connected vehicles</topic><topic>Consumption</topic><topic>content availability</topic><topic>content delivery</topic><topic>Content distribution networks</topic><topic>content replication</topic><topic>Density</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Mathematical models</topic><topic>Network topology</topic><topic>Networks</topic><topic>replica allocation</topic><topic>Replication</topic><topic>Vehicle dynamics</topic><topic>Vehicular ad hoc networks</topic><topic>Vehicular networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Silva, Fabricio A.</creatorcontrib><creatorcontrib>Boukerche, Azzedine</creatorcontrib><creatorcontrib>Braga Silva, Thais R. M.</creatorcontrib><creatorcontrib>Benevenuto, Fabricio</creatorcontrib><creatorcontrib>Ruiz, Linnyer B.</creatorcontrib><creatorcontrib>Loureiro, Antonio A. F.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Silva, Fabricio A.</au><au>Boukerche, Azzedine</au><au>Braga Silva, Thais R. M.</au><au>Benevenuto, Fabricio</au><au>Ruiz, Linnyer B.</au><au>Loureiro, Antonio A. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2015-12</date><risdate>2015</risdate><volume>64</volume><issue>12</issue><spage>5563</spage><epage>5574</epage><pages>5563-5574</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>The evolution of vehicular network applications, from simple alert message exchange to more elaborate and sophisticated systems, boosts the need for content delivery solutions. A useful technique, in this case, is content replication, in which strategically selected vehicles replicate content and help in the delivery process. However, content replication is particularly challenging in vehicular networks, due to their special characteristics, such as highly dynamic topology, diverse density, and large-scale scenarios. Although there has been progress in routing and dissemination solutions for vehicular networks, few studies have concentrated on the content replication problem. To address this issue, we propose an origin-destination-based content replication (ODCRep) solution that focuses on balancing the number of replicas across the application area. Differently from existing solutions, ODCRep relies only on the origin-destination information and uses computationally efficient algorithms. Results from exhaustive simulations show that ODCRep can achieve high coverage, yet can also consume fewer resources than existing solutions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2015.2487679</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2015-12, Vol.64 (12), p.5563-5574 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786173580 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Connected vehicles Consumption content availability content delivery Content distribution networks content replication Density Dynamical systems Dynamics Mathematical models Network topology Networks replica allocation Replication Vehicle dynamics Vehicular ad hoc networks Vehicular networks |
title | ODCRep: Origin-Destination-Based Content Replication for Vehicular Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T15%3A13%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ODCRep:%20Origin-Destination-Based%20Content%20Replication%20for%20Vehicular%20Networks&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Silva,%20Fabricio%20A.&rft.date=2015-12&rft.volume=64&rft.issue=12&rft.spage=5563&rft.epage=5574&rft.pages=5563-5574&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2015.2487679&rft_dat=%3Cproquest_ieee_%3E3899049281%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c324t-9c86584e9bbd0eb8b52ad605546c8184c6bf60647b7564308e6bade5cf3c08023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1750085986&rft_id=info:pmid/&rft_ieee_id=7293204&rfr_iscdi=true |