Loading…
Implementation of the Vanka-type multigrid solver for the finite element approximation of the Navier–Stokes equations on GPU
We present a complete GPU implementation of a geometric multigrid solver for the numerical solution of the Navier–Stokes equations for incompressible flow. The approximate solution is constructed on a two-dimensional unstructured triangular mesh. The problem is discretized by means of the mixed fini...
Saved in:
Published in: | Computer physics communications 2016-03, Vol.200, p.50-56 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a complete GPU implementation of a geometric multigrid solver for the numerical solution of the Navier–Stokes equations for incompressible flow. The approximate solution is constructed on a two-dimensional unstructured triangular mesh. The problem is discretized by means of the mixed finite element method with semi-implicit timestepping. The linear saddle-point problem arising from the scheme is solved by the geometric multigrid method with a Vanka-type smoother. The parallel solver is based on the red–black coloring of the mesh triangles. We achieved a speed-up of 11 compared to a parallel (4 threads) code based on OpenMP and 19 compared to a sequential code. |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2015.10.021 |