Loading…

Abundance and function of large woody debris in small, headwater streams in the Rocky Mountain foothills of Alberta, Canada

Large woody debris (LWD) significantly influences the structure and function of small headwater streams. However, what it contributes to geomorphic function depends on where it is located relative to the stream channel. We quantified LWD abundance and tested for associations among decay, position, o...

Full description

Saved in:
Bibliographic Details
Published in:River research and applications 2011-03, Vol.27 (3), p.297-311
Main Authors: Jones, T.A, Daniels, L.D, Powell, S.R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Large woody debris (LWD) significantly influences the structure and function of small headwater streams. However, what it contributes to geomorphic function depends on where it is located relative to the stream channel. We quantified LWD abundance and tested for associations among decay, position, orientation and function classes in 21 streams near Hinton, Alberta, Canada. LWD was more frequent (64.0 ± 3.3 LWD 100 m⁻¹) in streams in the Alberta foothills than it was in small streams in mountain, coastal, broadleaf deciduous and boreal forests, likely due to the narrow channel widths and low capacity of our study streams to transport logs downstream. LWD volumes were greater in coastal streams than in the Alberta foothills, likely due to differing tree sizes and decay rates. LWD morphology changed significantly as logs decayed and transitioned to different position and orientation classes. LWD in decay classes I and II were longest, most commonly in the bridge and partial bridge position classes, oriented perpendicular to stream flow, suspended above the channel and contributing least to stream geomorphic functions. LWD length and volume (but not diameter) decreased as decay advanced, making logs less stable. LWD in decay classes III and IV were strongly associated with partially bridged, loose, and buried position classes. They were more commonly diagonal or parallel to stream flow and contributed to bank stability, sediment retention, debris jams and riffle and pool formations. These results have been integrated into a conceptual model of LWD dynamics that provides a framework for future research on the mechanisms and rates of LWD recruitment, decay, transport and function. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:1535-1459
1535-1467
1535-1467
DOI:10.1002/rra.1353