Loading…
Pressure-driven suspension flow near jamming
We report here magnetic resonance imaging measurements performed on suspensions with a bulk solid volume fraction (ϕ_{0}) up to 0.55 flowing in a pipe. We visualize and quantify spatial distributions of ϕ and velocity across the pipe at different axial positions. For dense suspensions (ϕ_{0}>0.5)...
Saved in:
Published in: | Physical review letters 2015-02, Vol.114 (8), p.088301-088301, Article 088301 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report here magnetic resonance imaging measurements performed on suspensions with a bulk solid volume fraction (ϕ_{0}) up to 0.55 flowing in a pipe. We visualize and quantify spatial distributions of ϕ and velocity across the pipe at different axial positions. For dense suspensions (ϕ_{0}>0.5), we found a different behavior compared to the known cases of lower ϕ_{0}. Our experimental results demonstrate compaction within the jammed region (characterized by a zero macroscopic shear rate) from the jamming limit ϕ_{m}≈0.58 at its outer boundary to the random close packing limit ϕ_{rcp}≈0.64 at the center. Additionally, we show that ϕ and velocity profiles can be fairly well captured by a frictional rheology accounting for both further compaction of jammed regions as well as normal stress differences. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.114.088301 |