Loading…

Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions

The positivity of the probability measure of attractively interacting systems of 2N-component fermions enables the derivation of an exact convexity property for the ground-state energy of such systems. Using analogous arguments, applied to path-integral expressions for the entanglement entropy deriv...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2015-02, Vol.114 (5), p.050402-050402, Article 050402
Main Authors: Drut, Joaquín E, Porter, William J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-df624be49563d8fc8c6eb9b85cd70070fdbc7b797c34194d140479e4a4058de73
cites cdi_FETCH-LOGICAL-c392t-df624be49563d8fc8c6eb9b85cd70070fdbc7b797c34194d140479e4a4058de73
container_end_page 050402
container_issue 5
container_start_page 050402
container_title Physical review letters
container_volume 114
creator Drut, Joaquín E
Porter, William J
description The positivity of the probability measure of attractively interacting systems of 2N-component fermions enables the derivation of an exact convexity property for the ground-state energy of such systems. Using analogous arguments, applied to path-integral expressions for the entanglement entropy derived recently, we prove nonperturbative analytic relations for the Rényi entropies of those systems. These relations are valid for all subsystem sizes, particle numbers, and dimensions, and in arbitrary external trapping potentials.
doi_str_mv 10.1103/PhysRevLett.114.050402
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786198171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786198171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-df624be49563d8fc8c6eb9b85cd70070fdbc7b797c34194d140479e4a4058de73</originalsourceid><addsrcrecordid>eNqFUdtOwzAMjRCIjcEvTH0cDx1OkzbNI5q4SRMgYM9Rm7osqJeRZIP-Pd0GiDckS7aPjy_yIWRMYUopsIvHZeeecDNH73uATyEGDtEBGVIQMhQ9dEiGAIyGEkAMyIlzbwBAoyQ9JoMoTqTkERsSNWubDX4a3wVtGfglBtj4rHmtsO6DbWLb1a72vJhE9-eh6-oavTU6KNHWpm1c8GH8Msi8t5n2ZoOBaTzu4r54So7KrHJ49u1HZHF99TK7DecPN3ezy3momYx8WJRJxHPkMk5YkZY61QnmMk9jXYj-fiiLXItcSKEZp5IXlAMXEnnGIU4LFGxEJvu5K9u-r9F5VRunsaqyBtu1U1SkCZUpFfR_ahILFvW2pSZ7qratcxZLtbKmzmynKKitDuqPDj3A1V6HvnH8vWOd11j8tv08nn0BkS2HxQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1657327321</pqid></control><display><type>article</type><title>Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Drut, Joaquín E ; Porter, William J</creator><creatorcontrib>Drut, Joaquín E ; Porter, William J</creatorcontrib><description>The positivity of the probability measure of attractively interacting systems of 2N-component fermions enables the derivation of an exact convexity property for the ground-state energy of such systems. Using analogous arguments, applied to path-integral expressions for the entanglement entropy derived recently, we prove nonperturbative analytic relations for the Rényi entropies of those systems. These relations are valid for all subsystem sizes, particle numbers, and dimensions, and in arbitrary external trapping potentials.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.114.050402</identifier><identifier>PMID: 25699423</identifier><language>eng</language><publisher>United States</publisher><subject>Convexity ; Derivation ; Entanglement ; Entropy ; Entropy (Information) ; Fermions ; Mathematical analysis ; Trapping</subject><ispartof>Physical review letters, 2015-02, Vol.114 (5), p.050402-050402, Article 050402</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-df624be49563d8fc8c6eb9b85cd70070fdbc7b797c34194d140479e4a4058de73</citedby><cites>FETCH-LOGICAL-c392t-df624be49563d8fc8c6eb9b85cd70070fdbc7b797c34194d140479e4a4058de73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25699423$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Drut, Joaquín E</creatorcontrib><creatorcontrib>Porter, William J</creatorcontrib><title>Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The positivity of the probability measure of attractively interacting systems of 2N-component fermions enables the derivation of an exact convexity property for the ground-state energy of such systems. Using analogous arguments, applied to path-integral expressions for the entanglement entropy derived recently, we prove nonperturbative analytic relations for the Rényi entropies of those systems. These relations are valid for all subsystem sizes, particle numbers, and dimensions, and in arbitrary external trapping potentials.</description><subject>Convexity</subject><subject>Derivation</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Entropy (Information)</subject><subject>Fermions</subject><subject>Mathematical analysis</subject><subject>Trapping</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUdtOwzAMjRCIjcEvTH0cDx1OkzbNI5q4SRMgYM9Rm7osqJeRZIP-Pd0GiDckS7aPjy_yIWRMYUopsIvHZeeecDNH73uATyEGDtEBGVIQMhQ9dEiGAIyGEkAMyIlzbwBAoyQ9JoMoTqTkERsSNWubDX4a3wVtGfglBtj4rHmtsO6DbWLb1a72vJhE9-eh6-oavTU6KNHWpm1c8GH8Msi8t5n2ZoOBaTzu4r54So7KrHJ49u1HZHF99TK7DecPN3ezy3momYx8WJRJxHPkMk5YkZY61QnmMk9jXYj-fiiLXItcSKEZp5IXlAMXEnnGIU4LFGxEJvu5K9u-r9F5VRunsaqyBtu1U1SkCZUpFfR_ahILFvW2pSZ7qratcxZLtbKmzmynKKitDuqPDj3A1V6HvnH8vWOd11j8tv08nn0BkS2HxQ</recordid><startdate>20150206</startdate><enddate>20150206</enddate><creator>Drut, Joaquín E</creator><creator>Porter, William J</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150206</creationdate><title>Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions</title><author>Drut, Joaquín E ; Porter, William J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-df624be49563d8fc8c6eb9b85cd70070fdbc7b797c34194d140479e4a4058de73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Convexity</topic><topic>Derivation</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Entropy (Information)</topic><topic>Fermions</topic><topic>Mathematical analysis</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drut, Joaquín E</creatorcontrib><creatorcontrib>Porter, William J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drut, Joaquín E</au><au>Porter, William J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2015-02-06</date><risdate>2015</risdate><volume>114</volume><issue>5</issue><spage>050402</spage><epage>050402</epage><pages>050402-050402</pages><artnum>050402</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The positivity of the probability measure of attractively interacting systems of 2N-component fermions enables the derivation of an exact convexity property for the ground-state energy of such systems. Using analogous arguments, applied to path-integral expressions for the entanglement entropy derived recently, we prove nonperturbative analytic relations for the Rényi entropies of those systems. These relations are valid for all subsystem sizes, particle numbers, and dimensions, and in arbitrary external trapping potentials.</abstract><cop>United States</cop><pmid>25699423</pmid><doi>10.1103/PhysRevLett.114.050402</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2015-02, Vol.114 (5), p.050402-050402, Article 050402
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1786198171
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
subjects Convexity
Derivation
Entanglement
Entropy
Entropy (Information)
Fermions
Mathematical analysis
Trapping
title Convexity of the entanglement entropy of SU(2N)-symmetric fermions with attractive interactions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T04%3A46%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convexity%20of%20the%20entanglement%20entropy%20of%20SU(2N)-symmetric%20fermions%20with%20attractive%20interactions&rft.jtitle=Physical%20review%20letters&rft.au=Drut,%20Joaqu%C3%ADn%20E&rft.date=2015-02-06&rft.volume=114&rft.issue=5&rft.spage=050402&rft.epage=050402&rft.pages=050402-050402&rft.artnum=050402&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.114.050402&rft_dat=%3Cproquest_cross%3E1786198171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-df624be49563d8fc8c6eb9b85cd70070fdbc7b797c34194d140479e4a4058de73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1657327321&rft_id=info:pmid/25699423&rfr_iscdi=true