Loading…

Two-dimensional melting: from liquid-hexatic coexistence to continuous transitions

The phase diagram of two-dimensional continuous particle systems is studied using the event-chain Monte Carlo algorithm. For soft disks with repulsive power-law interactions ∝r^{-n} with n≳6, the recently established hard-disk melting scenario (n→∞) holds: a first-order liquid-hexatic and a continuo...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2015-01, Vol.114 (3), p.035702-035702, Article 035702
Main Authors: Kapfer, Sebastian C, Krauth, Werner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The phase diagram of two-dimensional continuous particle systems is studied using the event-chain Monte Carlo algorithm. For soft disks with repulsive power-law interactions ∝r^{-n} with n≳6, the recently established hard-disk melting scenario (n→∞) holds: a first-order liquid-hexatic and a continuous hexatic-solid transition are identified. Close to n=6, the coexisting liquid exhibits very long orientational correlations, and positional correlations in the hexatic are extremely short. For n≲6, the liquid-hexatic transition is continuous, with correlations consistent with the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY) scenario. To illustrate the generality of these results, we demonstrate that Yukawa particles likewise may follow either the KTHNY or the hard-disk melting scenario, depending on the Debye-Hückel screening length as well as on the temperature.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.114.035702