Loading…

Large work function shift of organic semiconductors inducing enhanced interfacial electron transfer in organic optoelectronics enabled by porphyrin aggregated nanostructures

We report on large work function shifts induced by the coverage of several organic semiconducting (OSC) films commonly used in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) with a porphyrin aggregated layer. The insertion between the organic film and the aluminum cathode of...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2014-05, Vol.7 (5), p.679-693
Main Authors: Vasilopoulou, Maria, Douvas, Antonios M., Georgiadou, Dimitra G., Constantoudis, Vassilios, Davazoglou, Dimitris, Kennou, Stella, Palilis, Leonidas C., Daphnomili, Dimitra, Coutsolelos, Athanassios G., Argitis, Panagiotis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on large work function shifts induced by the coverage of several organic semiconducting (OSC) films commonly used in organic light emitting diodes (OLEDs) and organic photovoltaics (OPVs) with a porphyrin aggregated layer. The insertion between the organic film and the aluminum cathode of an aggregated layer based on the meso-tetrakis(1-methylpyridinium-4-yl) porphyrin chloride (porphyrin 1 ), with its molecules adopting a face-to-face orientation parallel to the organic substrate, results in a significant shift of the OSC work function towards lower values due to the formation of a large interfacial dipole and induces large enhancement of either the OLED or OPV device efficiency. OLEDs based on poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-2,1′,3-thiadiazole)] (F8BT) and incorporating the porphyrin 1 at the cathode interface exhibited current efficiency values up to 13.8 cd/A, an almost three-fold improvement over the efficiency of 4.5 cd/A of the reference device. Accordingly, OPVs based on poly(3-hexylthiophene) (P3HT), [6,6]-phenyl-C 61 butyric acid methyl ester (PC 61 BM) and porphyrin 1 increased their external quantum efficiencies to 4.4% relative to 2.7% for the reference device without the porphyrin layer. The incorporation of a layer based on the zinc meso-tetrakis (1-methylpyridinium-4-yl)porphyrin chloride (porphyrin 2 ), with its molecules adopting an edge-to-edge orientation, also introduced improvements, albeit more modest in all cases, highlighting the impact of molecular orientation.
ISSN:1998-0124
1998-0000
DOI:10.1007/s12274-014-0428-9