Loading…
Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models
We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of c...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2016-01, Vol.71 (1), p.443-458 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543 |
---|---|
cites | cdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543 |
container_end_page | 458 |
container_issue | 1 |
container_start_page | 443 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 71 |
creator | Dang, Duy-Minh Nguyen, Duy Sewell, Granville |
description | We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples. |
doi_str_mv | 10.1016/j.camwa.2015.12.017 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786200055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122115005854</els_id><sourcerecordid>1786200055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</originalsourceid><addsrcrecordid>eNp9kDtOAzEQhi0EEiFwAhqXNLvY3pdTUESIlxRBA7Xl2OPEq33h2QXRcQduyElwCDXSWGNb8430f4Scc5ZyxsvLOjW6fdepYLxIuUgZrw7IjMsqS6qylIdkxuRCJlwIfkxOEGvGWJ4JNiP149RC8EY3FM0WWkDq-kCH-OW7DV2i1x3th9H3HdKpsxAojnqExMIA8dmNNMDGt5Dgux_NdgfVUzt8f35Z79yEEaRtb6HBU3LkdINw9tfn5OX25vn6Plk93T1cL1eJyQs-JjLX6yxnGY9HgnB5LGYsk_lC6AWU1uWuglJXNt7BameLtSzAFcJasS7ybE4u9nuH0L9OgKNqPRpoGt1BP6HilSxFFFAUcTTbj5rQIwZwKgZvdfhQnKmdWVWrX7NqZ1ZxoaLZSF3tqRgK3jwEhcZDZ8D6AGZUtvf_8j-jp4at</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786200055</pqid></control><display><type>article</type><title>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dang, Duy-Minh ; Nguyen, Duy ; Sewell, Granville</creator><creatorcontrib>Dang, Duy-Minh ; Nguyen, Duy ; Sewell, Granville</creatorcontrib><description>We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2015.12.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Asian ; Asian options ; Complex systems ; Computer simulation ; Construction ; Jump–diffusion ; Mathematical analysis ; Mathematical models ; Parallel computing ; Pricing ; Regime-switching ; System of partial integro-differential equations</subject><ispartof>Computers & mathematics with applications (1987), 2016-01, Vol.71 (1), p.443-458</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</citedby><cites>FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dang, Duy-Minh</creatorcontrib><creatorcontrib>Nguyen, Duy</creatorcontrib><creatorcontrib>Sewell, Granville</creatorcontrib><title>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</title><title>Computers & mathematics with applications (1987)</title><description>We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.</description><subject>Approximation</subject><subject>Asian</subject><subject>Asian options</subject><subject>Complex systems</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Jump–diffusion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parallel computing</subject><subject>Pricing</subject><subject>Regime-switching</subject><subject>System of partial integro-differential equations</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEQhi0EEiFwAhqXNLvY3pdTUESIlxRBA7Xl2OPEq33h2QXRcQduyElwCDXSWGNb8430f4Scc5ZyxsvLOjW6fdepYLxIuUgZrw7IjMsqS6qylIdkxuRCJlwIfkxOEGvGWJ4JNiP149RC8EY3FM0WWkDq-kCH-OW7DV2i1x3th9H3HdKpsxAojnqExMIA8dmNNMDGt5Dgux_NdgfVUzt8f35Z79yEEaRtb6HBU3LkdINw9tfn5OX25vn6Plk93T1cL1eJyQs-JjLX6yxnGY9HgnB5LGYsk_lC6AWU1uWuglJXNt7BameLtSzAFcJasS7ybE4u9nuH0L9OgKNqPRpoGt1BP6HilSxFFFAUcTTbj5rQIwZwKgZvdfhQnKmdWVWrX7NqZ1ZxoaLZSF3tqRgK3jwEhcZDZ8D6AGZUtvf_8j-jp4at</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Dang, Duy-Minh</creator><creator>Nguyen, Duy</creator><creator>Sewell, Granville</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160101</creationdate><title>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</title><author>Dang, Duy-Minh ; Nguyen, Duy ; Sewell, Granville</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Asian</topic><topic>Asian options</topic><topic>Complex systems</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Jump–diffusion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parallel computing</topic><topic>Pricing</topic><topic>Regime-switching</topic><topic>System of partial integro-differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Duy-Minh</creatorcontrib><creatorcontrib>Nguyen, Duy</creatorcontrib><creatorcontrib>Sewell, Granville</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Duy-Minh</au><au>Nguyen, Duy</au><au>Sewell, Granville</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>71</volume><issue>1</issue><spage>443</spage><epage>458</epage><pages>443-458</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2015.12.017</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2016-01, Vol.71 (1), p.443-458 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786200055 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Approximation Asian Asian options Complex systems Computer simulation Construction Jump–diffusion Mathematical analysis Mathematical models Parallel computing Pricing Regime-switching System of partial integro-differential equations |
title | Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20schemes%20for%20pricing%20Asian%20options%20under%20state-dependent%20regime-switching%20jump%E2%80%93diffusion%20models&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Dang,%20Duy-Minh&rft.date=2016-01-01&rft.volume=71&rft.issue=1&rft.spage=443&rft.epage=458&rft.pages=443-458&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2015.12.017&rft_dat=%3Cproquest_cross%3E1786200055%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786200055&rft_id=info:pmid/&rfr_iscdi=true |