Loading…

Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models

We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of c...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2016-01, Vol.71 (1), p.443-458
Main Authors: Dang, Duy-Minh, Nguyen, Duy, Sewell, Granville
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543
cites cdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543
container_end_page 458
container_issue 1
container_start_page 443
container_title Computers & mathematics with applications (1987)
container_volume 71
creator Dang, Duy-Minh
Nguyen, Duy
Sewell, Granville
description We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.
doi_str_mv 10.1016/j.camwa.2015.12.017
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786200055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122115005854</els_id><sourcerecordid>1786200055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</originalsourceid><addsrcrecordid>eNp9kDtOAzEQhi0EEiFwAhqXNLvY3pdTUESIlxRBA7Xl2OPEq33h2QXRcQduyElwCDXSWGNb8430f4Scc5ZyxsvLOjW6fdepYLxIuUgZrw7IjMsqS6qylIdkxuRCJlwIfkxOEGvGWJ4JNiP149RC8EY3FM0WWkDq-kCH-OW7DV2i1x3th9H3HdKpsxAojnqExMIA8dmNNMDGt5Dgux_NdgfVUzt8f35Z79yEEaRtb6HBU3LkdINw9tfn5OX25vn6Plk93T1cL1eJyQs-JjLX6yxnGY9HgnB5LGYsk_lC6AWU1uWuglJXNt7BameLtSzAFcJasS7ybE4u9nuH0L9OgKNqPRpoGt1BP6HilSxFFFAUcTTbj5rQIwZwKgZvdfhQnKmdWVWrX7NqZ1ZxoaLZSF3tqRgK3jwEhcZDZ8D6AGZUtvf_8j-jp4at</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786200055</pqid></control><display><type>article</type><title>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Dang, Duy-Minh ; Nguyen, Duy ; Sewell, Granville</creator><creatorcontrib>Dang, Duy-Minh ; Nguyen, Duy ; Sewell, Granville</creatorcontrib><description>We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2015.12.017</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Approximation ; Asian ; Asian options ; Complex systems ; Computer simulation ; Construction ; Jump–diffusion ; Mathematical analysis ; Mathematical models ; Parallel computing ; Pricing ; Regime-switching ; System of partial integro-differential equations</subject><ispartof>Computers &amp; mathematics with applications (1987), 2016-01, Vol.71 (1), p.443-458</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</citedby><cites>FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Dang, Duy-Minh</creatorcontrib><creatorcontrib>Nguyen, Duy</creatorcontrib><creatorcontrib>Sewell, Granville</creatorcontrib><title>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</title><title>Computers &amp; mathematics with applications (1987)</title><description>We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.</description><subject>Approximation</subject><subject>Asian</subject><subject>Asian options</subject><subject>Complex systems</subject><subject>Computer simulation</subject><subject>Construction</subject><subject>Jump–diffusion</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parallel computing</subject><subject>Pricing</subject><subject>Regime-switching</subject><subject>System of partial integro-differential equations</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kDtOAzEQhi0EEiFwAhqXNLvY3pdTUESIlxRBA7Xl2OPEq33h2QXRcQduyElwCDXSWGNb8430f4Scc5ZyxsvLOjW6fdepYLxIuUgZrw7IjMsqS6qylIdkxuRCJlwIfkxOEGvGWJ4JNiP149RC8EY3FM0WWkDq-kCH-OW7DV2i1x3th9H3HdKpsxAojnqExMIA8dmNNMDGt5Dgux_NdgfVUzt8f35Z79yEEaRtb6HBU3LkdINw9tfn5OX25vn6Plk93T1cL1eJyQs-JjLX6yxnGY9HgnB5LGYsk_lC6AWU1uWuglJXNt7BameLtSzAFcJasS7ybE4u9nuH0L9OgKNqPRpoGt1BP6HilSxFFFAUcTTbj5rQIwZwKgZvdfhQnKmdWVWrX7NqZ1ZxoaLZSF3tqRgK3jwEhcZDZ8D6AGZUtvf_8j-jp4at</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Dang, Duy-Minh</creator><creator>Nguyen, Duy</creator><creator>Sewell, Granville</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160101</creationdate><title>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</title><author>Dang, Duy-Minh ; Nguyen, Duy ; Sewell, Granville</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Asian</topic><topic>Asian options</topic><topic>Complex systems</topic><topic>Computer simulation</topic><topic>Construction</topic><topic>Jump–diffusion</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parallel computing</topic><topic>Pricing</topic><topic>Regime-switching</topic><topic>System of partial integro-differential equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dang, Duy-Minh</creatorcontrib><creatorcontrib>Nguyen, Duy</creatorcontrib><creatorcontrib>Sewell, Granville</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Duy-Minh</au><au>Nguyen, Duy</au><au>Sewell, Granville</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>71</volume><issue>1</issue><spage>443</spage><epage>458</epage><pages>443-458</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>We study the pricing problem of Asian options when the underlying asset price follows a very general state-dependent regime-switching jump–diffusion process via a partial differential equation approach. Under this model, the price of the option can be obtained by solving a highly complex system of coupled two-dimensional parabolic partial integro-differential equations (PIDEs). We prove existence of the solution to this system of PIDEs by the method of upper and lower solutions via constructing a monotonic sequence of approximating solutions whose limit is a strong solution of the PIDE system. We then propose several numerical schemes for solving the system of PIDEs. One of the proposed schemes is built upon the constructive proof, hence its results are provably convergent to the solution of the system of PIDEs. We illustrate the accuracy of the proposed methods by several numerical examples.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2015.12.017</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2016-01, Vol.71 (1), p.443-458
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_1786200055
source ScienceDirect Freedom Collection 2022-2024
subjects Approximation
Asian
Asian options
Complex systems
Computer simulation
Construction
Jump–diffusion
Mathematical analysis
Mathematical models
Parallel computing
Pricing
Regime-switching
System of partial integro-differential equations
title Numerical schemes for pricing Asian options under state-dependent regime-switching jump–diffusion models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T13%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20schemes%20for%20pricing%20Asian%20options%20under%20state-dependent%20regime-switching%20jump%E2%80%93diffusion%20models&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Dang,%20Duy-Minh&rft.date=2016-01-01&rft.volume=71&rft.issue=1&rft.spage=443&rft.epage=458&rft.pages=443-458&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2015.12.017&rft_dat=%3Cproquest_cross%3E1786200055%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c451t-84ab340314038e2f42f40cd08492a9e6df4f7e6a7de6dedafd5b85ef52dd2b543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786200055&rft_id=info:pmid/&rfr_iscdi=true