Loading…

Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands

RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2014-11, Vol.20 (47), p.15409-15418
Main Authors: Wodrich, Matthew D., Ye, Baihua, Gonthier, Jérôme F., Corminboeuf, Clémence, Cramer, Nicolai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3
cites cdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3
container_end_page 15418
container_issue 47
container_start_page 15409
container_title Chemistry : a European journal
container_volume 20
creator Wodrich, Matthew D.
Ye, Baihua
Gonthier, Jérôme F.
Corminboeuf, Clémence
Cramer, Nicolai
description RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways. RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity).
doi_str_mv 10.1002/chem.201404515
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786200670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786200670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EomVgyxJFYlMWGfyI7YQdpEM70vDQdBCIjeUkNzNuk3iwE9rwp_iLeDplhNh0Zcv3O-de34PQc4KnBGP6utxAO6WYJDjhhD9Ax4RTEjMp-EN0jLNExoKz7Ag98f4SY5wJxh6jI8ppymSWHqPfC7PWXRXntuudbRqooiWsja3MT3Br6Pros-4313r0ka2j5SYUhvZkPp-_inPd62b8FRSnZjNWzhpvfwyms43tILoYu34D3vg30exmC860wUw3UWgW5bbdDr3uje3Cy0U_VAZu_U9NXYPbdc3HsrHbnSTUurGJ9nP6p-hRrRsPz-7OCfryfrbKz-PFp7N5_nYRl4JIHvMCRJLqFFjBw6UGqimFTGKia4I1kzgpBMhMQ1KwrC6SLMG0zDJaMcmxLNgEnex9ty58CnyvWuNLaBrdgR28IjIVFGMh8f2ooBQLJkIQE_TyP_TSDi4s4ZbCgvOEp4Ga7qnSWe8d1Gob1qfdqAhWu9TVLnV1SD0IXtzZDkUL1QH_G3MAsj1wbRoY77FT-fnsw7_m8V5rfA83B612V0rIsC319eOZwotvq3erJVff2R8sF8tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620655458</pqid></control><display><type>article</type><title>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wodrich, Matthew D. ; Ye, Baihua ; Gonthier, Jérôme F. ; Corminboeuf, Clémence ; Cramer, Nicolai</creator><creatorcontrib>Wodrich, Matthew D. ; Ye, Baihua ; Gonthier, Jérôme F. ; Corminboeuf, Clémence ; Cramer, Nicolai</creatorcontrib><description>RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways. RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201404515</identifier><identifier>PMID: 25283798</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Activation ; Adducts ; Catalysis ; Catalysts ; Chemistry ; density functional calculations ; Formations ; homogeneous catalysis ; Insertion ; ligand control ; Pathways ; Rhodium ; transition state theory</subject><ispartof>Chemistry : a European journal, 2014-11, Vol.20 (47), p.15409-15418</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</citedby><cites>FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25283798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wodrich, Matthew D.</creatorcontrib><creatorcontrib>Ye, Baihua</creatorcontrib><creatorcontrib>Gonthier, Jérôme F.</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Cramer, Nicolai</creatorcontrib><title>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways. RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity).</description><subject>Activation</subject><subject>Adducts</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>density functional calculations</subject><subject>Formations</subject><subject>homogeneous catalysis</subject><subject>Insertion</subject><subject>ligand control</subject><subject>Pathways</subject><subject>Rhodium</subject><subject>transition state theory</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS0EomVgyxJFYlMWGfyI7YQdpEM70vDQdBCIjeUkNzNuk3iwE9rwp_iLeDplhNh0Zcv3O-de34PQc4KnBGP6utxAO6WYJDjhhD9Ax4RTEjMp-EN0jLNExoKz7Ag98f4SY5wJxh6jI8ppymSWHqPfC7PWXRXntuudbRqooiWsja3MT3Br6Pros-4313r0ka2j5SYUhvZkPp-_inPd62b8FRSnZjNWzhpvfwyms43tILoYu34D3vg30exmC860wUw3UWgW5bbdDr3uje3Cy0U_VAZu_U9NXYPbdc3HsrHbnSTUurGJ9nP6p-hRrRsPz-7OCfryfrbKz-PFp7N5_nYRl4JIHvMCRJLqFFjBw6UGqimFTGKia4I1kzgpBMhMQ1KwrC6SLMG0zDJaMcmxLNgEnex9ty58CnyvWuNLaBrdgR28IjIVFGMh8f2ooBQLJkIQE_TyP_TSDi4s4ZbCgvOEp4Ga7qnSWe8d1Gob1qfdqAhWu9TVLnV1SD0IXtzZDkUL1QH_G3MAsj1wbRoY77FT-fnsw7_m8V5rfA83B612V0rIsC319eOZwotvq3erJVff2R8sF8tQ</recordid><startdate>20141117</startdate><enddate>20141117</enddate><creator>Wodrich, Matthew D.</creator><creator>Ye, Baihua</creator><creator>Gonthier, Jérôme F.</creator><creator>Corminboeuf, Clémence</creator><creator>Cramer, Nicolai</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20141117</creationdate><title>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</title><author>Wodrich, Matthew D. ; Ye, Baihua ; Gonthier, Jérôme F. ; Corminboeuf, Clémence ; Cramer, Nicolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation</topic><topic>Adducts</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>density functional calculations</topic><topic>Formations</topic><topic>homogeneous catalysis</topic><topic>Insertion</topic><topic>ligand control</topic><topic>Pathways</topic><topic>Rhodium</topic><topic>transition state theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wodrich, Matthew D.</creatorcontrib><creatorcontrib>Ye, Baihua</creatorcontrib><creatorcontrib>Gonthier, Jérôme F.</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Cramer, Nicolai</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wodrich, Matthew D.</au><au>Ye, Baihua</au><au>Gonthier, Jérôme F.</au><au>Corminboeuf, Clémence</au><au>Cramer, Nicolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2014-11-17</date><risdate>2014</risdate><volume>20</volume><issue>47</issue><spage>15409</spage><epage>15418</epage><pages>15409-15418</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways. RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25283798</pmid><doi>10.1002/chem.201404515</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2014-11, Vol.20 (47), p.15409-15418
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1786200670
source Wiley-Blackwell Read & Publish Collection
subjects Activation
Adducts
Catalysis
Catalysts
Chemistry
density functional calculations
Formations
homogeneous catalysis
Insertion
ligand control
Pathways
Rhodium
transition state theory
title Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-Controlled%20Regiodivergent%20Pathways%20of%20Rhodium(III)-Catalyzed%20Dihydroisoquinolone%20Synthesis:%20Experimental%20and%20Computational%20Studies%20of%20Different%20Cyclopentadienyl%20Ligands&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Wodrich,%20Matthew%20D.&rft.date=2014-11-17&rft.volume=20&rft.issue=47&rft.spage=15409&rft.epage=15418&rft.pages=15409-15418&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201404515&rft_dat=%3Cproquest_cross%3E1786200670%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1620655458&rft_id=info:pmid/25283798&rfr_iscdi=true