Loading…
Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands
RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two...
Saved in:
Published in: | Chemistry : a European journal 2014-11, Vol.20 (47), p.15409-15418 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3 |
container_end_page | 15418 |
container_issue | 47 |
container_start_page | 15409 |
container_title | Chemistry : a European journal |
container_volume | 20 |
creator | Wodrich, Matthew D. Ye, Baihua Gonthier, Jérôme F. Corminboeuf, Clémence Cramer, Nicolai |
description | RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways.
RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity). |
doi_str_mv | 10.1002/chem.201404515 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786200670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786200670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EomVgyxJFYlMWGfyI7YQdpEM70vDQdBCIjeUkNzNuk3iwE9rwp_iLeDplhNh0Zcv3O-de34PQc4KnBGP6utxAO6WYJDjhhD9Ax4RTEjMp-EN0jLNExoKz7Ag98f4SY5wJxh6jI8ppymSWHqPfC7PWXRXntuudbRqooiWsja3MT3Br6Pros-4313r0ka2j5SYUhvZkPp-_inPd62b8FRSnZjNWzhpvfwyms43tILoYu34D3vg30exmC860wUw3UWgW5bbdDr3uje3Cy0U_VAZu_U9NXYPbdc3HsrHbnSTUurGJ9nP6p-hRrRsPz-7OCfryfrbKz-PFp7N5_nYRl4JIHvMCRJLqFFjBw6UGqimFTGKia4I1kzgpBMhMQ1KwrC6SLMG0zDJaMcmxLNgEnex9ty58CnyvWuNLaBrdgR28IjIVFGMh8f2ooBQLJkIQE_TyP_TSDi4s4ZbCgvOEp4Ga7qnSWe8d1Gob1qfdqAhWu9TVLnV1SD0IXtzZDkUL1QH_G3MAsj1wbRoY77FT-fnsw7_m8V5rfA83B612V0rIsC319eOZwotvq3erJVff2R8sF8tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1620655458</pqid></control><display><type>article</type><title>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wodrich, Matthew D. ; Ye, Baihua ; Gonthier, Jérôme F. ; Corminboeuf, Clémence ; Cramer, Nicolai</creator><creatorcontrib>Wodrich, Matthew D. ; Ye, Baihua ; Gonthier, Jérôme F. ; Corminboeuf, Clémence ; Cramer, Nicolai</creatorcontrib><description>RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways.
RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity).</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201404515</identifier><identifier>PMID: 25283798</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Activation ; Adducts ; Catalysis ; Catalysts ; Chemistry ; density functional calculations ; Formations ; homogeneous catalysis ; Insertion ; ligand control ; Pathways ; Rhodium ; transition state theory</subject><ispartof>Chemistry : a European journal, 2014-11, Vol.20 (47), p.15409-15418</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</citedby><cites>FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25283798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wodrich, Matthew D.</creatorcontrib><creatorcontrib>Ye, Baihua</creatorcontrib><creatorcontrib>Gonthier, Jérôme F.</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Cramer, Nicolai</creatorcontrib><title>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways.
RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity).</description><subject>Activation</subject><subject>Adducts</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry</subject><subject>density functional calculations</subject><subject>Formations</subject><subject>homogeneous catalysis</subject><subject>Insertion</subject><subject>ligand control</subject><subject>Pathways</subject><subject>Rhodium</subject><subject>transition state theory</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS0EomVgyxJFYlMWGfyI7YQdpEM70vDQdBCIjeUkNzNuk3iwE9rwp_iLeDplhNh0Zcv3O-de34PQc4KnBGP6utxAO6WYJDjhhD9Ax4RTEjMp-EN0jLNExoKz7Ag98f4SY5wJxh6jI8ppymSWHqPfC7PWXRXntuudbRqooiWsja3MT3Br6Pros-4313r0ka2j5SYUhvZkPp-_inPd62b8FRSnZjNWzhpvfwyms43tILoYu34D3vg30exmC860wUw3UWgW5bbdDr3uje3Cy0U_VAZu_U9NXYPbdc3HsrHbnSTUurGJ9nP6p-hRrRsPz-7OCfryfrbKz-PFp7N5_nYRl4JIHvMCRJLqFFjBw6UGqimFTGKia4I1kzgpBMhMQ1KwrC6SLMG0zDJaMcmxLNgEnex9ty58CnyvWuNLaBrdgR28IjIVFGMh8f2ooBQLJkIQE_TyP_TSDi4s4ZbCgvOEp4Ga7qnSWe8d1Gob1qfdqAhWu9TVLnV1SD0IXtzZDkUL1QH_G3MAsj1wbRoY77FT-fnsw7_m8V5rfA83B612V0rIsC319eOZwotvq3erJVff2R8sF8tQ</recordid><startdate>20141117</startdate><enddate>20141117</enddate><creator>Wodrich, Matthew D.</creator><creator>Ye, Baihua</creator><creator>Gonthier, Jérôme F.</creator><creator>Corminboeuf, Clémence</creator><creator>Cramer, Nicolai</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20141117</creationdate><title>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</title><author>Wodrich, Matthew D. ; Ye, Baihua ; Gonthier, Jérôme F. ; Corminboeuf, Clémence ; Cramer, Nicolai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Activation</topic><topic>Adducts</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry</topic><topic>density functional calculations</topic><topic>Formations</topic><topic>homogeneous catalysis</topic><topic>Insertion</topic><topic>ligand control</topic><topic>Pathways</topic><topic>Rhodium</topic><topic>transition state theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wodrich, Matthew D.</creatorcontrib><creatorcontrib>Ye, Baihua</creatorcontrib><creatorcontrib>Gonthier, Jérôme F.</creatorcontrib><creatorcontrib>Corminboeuf, Clémence</creatorcontrib><creatorcontrib>Cramer, Nicolai</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wodrich, Matthew D.</au><au>Ye, Baihua</au><au>Gonthier, Jérôme F.</au><au>Corminboeuf, Clémence</au><au>Cramer, Nicolai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2014-11-17</date><risdate>2014</risdate><volume>20</volume><issue>47</issue><spage>15409</spage><epage>15418</epage><pages>15409-15418</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>RhIII‐catalyzed directed CH functionalizations of arylhydroxamates have become a valuable synthetic tool. To date, the regioselectivity of the insertion of the unsaturated acceptor into the common cyclometalated intermediate was dependent solely on intrinsic substrate control. Herein, we report two different catalytic systems that allow the selective formation of regioisomeric 3‐aryl dihydroisoquinolones and previously inaccessible 4‐aryl dihydroisoquinolones under full catalyst control. The differences in the catalysts are computationally examined using density functional theory and transition state theory of different possible pathways to elucidate key contributing factors leading to the regioisomeric products. The stabilities of the initially formed rhodium complex styrene adducts, as well as activation barrier differences for the migratory insertion, were identified as key contributing factors for the regiodivergent pathways.
RhIII‐catalyzed directed CH functionalization of aryl hydroxamates enables the selective formation of regioisomeric 3‐aryl or 4‐aryl dihydroisoquinolones with two different catalytic systems. The different selectivities are examined using DFT and transition state theory. The stabilities of the rhodium complex adducts and migratory‐insertion activation barriers are key factors for the regiodivergent pathways (see scheme; rs=regioselectivity).</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>25283798</pmid><doi>10.1002/chem.201404515</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2014-11, Vol.20 (47), p.15409-15418 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786200670 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Activation Adducts Catalysis Catalysts Chemistry density functional calculations Formations homogeneous catalysis Insertion ligand control Pathways Rhodium transition state theory |
title | Ligand-Controlled Regiodivergent Pathways of Rhodium(III)-Catalyzed Dihydroisoquinolone Synthesis: Experimental and Computational Studies of Different Cyclopentadienyl Ligands |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A14%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand-Controlled%20Regiodivergent%20Pathways%20of%20Rhodium(III)-Catalyzed%20Dihydroisoquinolone%20Synthesis:%20Experimental%20and%20Computational%20Studies%20of%20Different%20Cyclopentadienyl%20Ligands&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Wodrich,%20Matthew%20D.&rft.date=2014-11-17&rft.volume=20&rft.issue=47&rft.spage=15409&rft.epage=15418&rft.pages=15409-15418&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201404515&rft_dat=%3Cproquest_cross%3E1786200670%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6175-5be648a8e3b5648fe2a22e9701af10a3704b6e79ae4b39fb49402c992d37507b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1620655458&rft_id=info:pmid/25283798&rfr_iscdi=true |