Loading…
Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation
We propose and analyze a scheme for parametrically cooling bilayer cuprates based on the selective driving of a c-axis vibrational mode. The scheme exploits the vibration as a transducer making the Josephson plasma frequencies time dependent. We show how modulation at the difference frequency betwee...
Saved in:
Published in: | Physical review letters 2015-04, Vol.114 (13), p.137001-137001, Article 137001 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We propose and analyze a scheme for parametrically cooling bilayer cuprates based on the selective driving of a c-axis vibrational mode. The scheme exploits the vibration as a transducer making the Josephson plasma frequencies time dependent. We show how modulation at the difference frequency between the intrabilayer and interbilayer plasmon substantially suppresses interbilayer phase fluctuations, responsible for switching c-axis transport from a superconducting to a resistive state. Our calculations indicate that this may provide a viable mechanism for stabilizing nonequilibrium superconductivity even above Tc, provided a finite pair density survives between the bilayers out of equilibrium. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.114.137001 |