Loading…

A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair

The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomaterials applications 2016-01, Vol.30 (6), p.873-885
Main Authors: Ainola, Mari, Tomaszewski, Waclaw, Ostrowska, Barbara, Wesolowska, Ewa, Wagner, H Daniel, Swieszkowski, Wojciech, Sillat, Tarvo, Peltola, Emilia, Konttinen, Yrjö T
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83
cites cdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83
container_end_page 885
container_issue 6
container_start_page 873
container_title Journal of biomaterials applications
container_volume 30
creator Ainola, Mari
Tomaszewski, Waclaw
Ostrowska, Barbara
Wesolowska, Ewa
Wagner, H Daniel
Swieszkowski, Wojciech
Sillat, Tarvo
Peltola, Emilia
Konttinen, Yrjö T
description The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.
doi_str_mv 10.1177/0885328215604069
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786206374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0885328215604069</sage_id><sourcerecordid>1762365433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EoqWwM6GMLIGznTjOWFV8SZVYgDWynUvrKomLnSD135OohQEJqdMN97yPdPcSck3hjtIsuwcpU84ko6mABER-QqY05RBLYOyUTMd1PO4n5CKEDQCkeSLOyYQJnlAh6JR8zCNtnTKd_cJovdPellG39ohxaRtsg3WtqqPOhtBjjO3KtojetqvIuDZ0vjddVDkfGeU7W6sVRh63yvpLclapOuDVYc7I--PD2-I5Xr4-vSzmy9gkknVxyjPIS22UKoGBlhVHEMxkoqoUK6XQlS5L1AohpxlyaYYDGBe5krnmiJLPyO3eu_Xus8fQFY0NButatej6UNBMCgaCZ8kRqBjUacL5MSjInCbJiMIeNd6F4LEqtt42yu8KCsXYUfG3oyFyc7D3usHyN_BTygDEeyAMDy02rvdDB-F_4TfoEJl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760891443</pqid></control><display><type>article</type><title>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024: Reading List</source><creator>Ainola, Mari ; Tomaszewski, Waclaw ; Ostrowska, Barbara ; Wesolowska, Ewa ; Wagner, H Daniel ; Swieszkowski, Wojciech ; Sillat, Tarvo ; Peltola, Emilia ; Konttinen, Yrjö T</creator><creatorcontrib>Ainola, Mari ; Tomaszewski, Waclaw ; Ostrowska, Barbara ; Wesolowska, Ewa ; Wagner, H Daniel ; Swieszkowski, Wojciech ; Sillat, Tarvo ; Peltola, Emilia ; Konttinen, Yrjö T</creatorcontrib><description>The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.</description><identifier>ISSN: 0885-3282</identifier><identifier>EISSN: 1530-8022</identifier><identifier>DOI: 10.1177/0885328215604069</identifier><identifier>PMID: 26341661</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biodegradability ; Cartilage ; Cartilage, Articular - cytology ; Cartilage, Articular - growth &amp; development ; Cell Aggregation - physiology ; Cell Differentiation - physiology ; Cell Line ; Chitosan ; Chondrocytes - cytology ; Chondrocytes - physiology ; Chondrogenesis - physiology ; Construction ; Equipment Design ; Equipment Failure Analysis ; Guided Tissue Regeneration - instrumentation ; Humans ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - physiology ; Nanofibers - chemistry ; Nanostructure ; Polyesters - chemistry ; Polyethylene oxides ; Printing, Three-Dimensional ; Stem cells ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Journal of biomaterials applications, 2016-01, Vol.30 (6), p.873-885</ispartof><rights>The Author(s) 2015</rights><rights>The Author(s) 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</citedby><cites>FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26341661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ainola, Mari</creatorcontrib><creatorcontrib>Tomaszewski, Waclaw</creatorcontrib><creatorcontrib>Ostrowska, Barbara</creatorcontrib><creatorcontrib>Wesolowska, Ewa</creatorcontrib><creatorcontrib>Wagner, H Daniel</creatorcontrib><creatorcontrib>Swieszkowski, Wojciech</creatorcontrib><creatorcontrib>Sillat, Tarvo</creatorcontrib><creatorcontrib>Peltola, Emilia</creatorcontrib><creatorcontrib>Konttinen, Yrjö T</creatorcontrib><title>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</title><title>Journal of biomaterials applications</title><addtitle>J Biomater Appl</addtitle><description>The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.</description><subject>Biodegradability</subject><subject>Cartilage</subject><subject>Cartilage, Articular - cytology</subject><subject>Cartilage, Articular - growth &amp; development</subject><subject>Cell Aggregation - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Chitosan</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - physiology</subject><subject>Chondrogenesis - physiology</subject><subject>Construction</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Guided Tissue Regeneration - instrumentation</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Nanofibers - chemistry</subject><subject>Nanostructure</subject><subject>Polyesters - chemistry</subject><subject>Polyethylene oxides</subject><subject>Printing, Three-Dimensional</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>0885-3282</issn><issn>1530-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAQhi0EoqWwM6GMLIGznTjOWFV8SZVYgDWynUvrKomLnSD135OohQEJqdMN97yPdPcSck3hjtIsuwcpU84ko6mABER-QqY05RBLYOyUTMd1PO4n5CKEDQCkeSLOyYQJnlAh6JR8zCNtnTKd_cJovdPellG39ohxaRtsg3WtqqPOhtBjjO3KtojetqvIuDZ0vjddVDkfGeU7W6sVRh63yvpLclapOuDVYc7I--PD2-I5Xr4-vSzmy9gkknVxyjPIS22UKoGBlhVHEMxkoqoUK6XQlS5L1AohpxlyaYYDGBe5krnmiJLPyO3eu_Xus8fQFY0NButatej6UNBMCgaCZ8kRqBjUacL5MSjInCbJiMIeNd6F4LEqtt42yu8KCsXYUfG3oyFyc7D3usHyN_BTygDEeyAMDy02rvdDB-F_4TfoEJl0</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Ainola, Mari</creator><creator>Tomaszewski, Waclaw</creator><creator>Ostrowska, Barbara</creator><creator>Wesolowska, Ewa</creator><creator>Wagner, H Daniel</creator><creator>Swieszkowski, Wojciech</creator><creator>Sillat, Tarvo</creator><creator>Peltola, Emilia</creator><creator>Konttinen, Yrjö T</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</title><author>Ainola, Mari ; Tomaszewski, Waclaw ; Ostrowska, Barbara ; Wesolowska, Ewa ; Wagner, H Daniel ; Swieszkowski, Wojciech ; Sillat, Tarvo ; Peltola, Emilia ; Konttinen, Yrjö T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biodegradability</topic><topic>Cartilage</topic><topic>Cartilage, Articular - cytology</topic><topic>Cartilage, Articular - growth &amp; development</topic><topic>Cell Aggregation - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Chitosan</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - physiology</topic><topic>Chondrogenesis - physiology</topic><topic>Construction</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Guided Tissue Regeneration - instrumentation</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Nanofibers - chemistry</topic><topic>Nanostructure</topic><topic>Polyesters - chemistry</topic><topic>Polyethylene oxides</topic><topic>Printing, Three-Dimensional</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ainola, Mari</creatorcontrib><creatorcontrib>Tomaszewski, Waclaw</creatorcontrib><creatorcontrib>Ostrowska, Barbara</creatorcontrib><creatorcontrib>Wesolowska, Ewa</creatorcontrib><creatorcontrib>Wagner, H Daniel</creatorcontrib><creatorcontrib>Swieszkowski, Wojciech</creatorcontrib><creatorcontrib>Sillat, Tarvo</creatorcontrib><creatorcontrib>Peltola, Emilia</creatorcontrib><creatorcontrib>Konttinen, Yrjö T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomaterials applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ainola, Mari</au><au>Tomaszewski, Waclaw</au><au>Ostrowska, Barbara</au><au>Wesolowska, Ewa</au><au>Wagner, H Daniel</au><au>Swieszkowski, Wojciech</au><au>Sillat, Tarvo</au><au>Peltola, Emilia</au><au>Konttinen, Yrjö T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</atitle><jtitle>Journal of biomaterials applications</jtitle><addtitle>J Biomater Appl</addtitle><date>2016-01</date><risdate>2016</risdate><volume>30</volume><issue>6</issue><spage>873</spage><epage>885</epage><pages>873-885</pages><issn>0885-3282</issn><eissn>1530-8022</eissn><abstract>The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>26341661</pmid><doi>10.1177/0885328215604069</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-3282
ispartof Journal of biomaterials applications, 2016-01, Vol.30 (6), p.873-885
issn 0885-3282
1530-8022
language eng
recordid cdi_proquest_miscellaneous_1786206374
source SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024: Reading List
subjects Biodegradability
Cartilage
Cartilage, Articular - cytology
Cartilage, Articular - growth & development
Cell Aggregation - physiology
Cell Differentiation - physiology
Cell Line
Chitosan
Chondrocytes - cytology
Chondrocytes - physiology
Chondrogenesis - physiology
Construction
Equipment Design
Equipment Failure Analysis
Guided Tissue Regeneration - instrumentation
Humans
Materials Testing
Mesenchymal Stromal Cells - cytology
Mesenchymal Stromal Cells - physiology
Nanofibers - chemistry
Nanostructure
Polyesters - chemistry
Polyethylene oxides
Printing, Three-Dimensional
Stem cells
Tissue engineering
Tissue Engineering - instrumentation
Tissue Engineering - methods
Tissue Scaffolds
title A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bioactive%20hybrid%20three-dimensional%20tissue-engineering%20construct%20for%20cartilage%20repair&rft.jtitle=Journal%20of%20biomaterials%20applications&rft.au=Ainola,%20Mari&rft.date=2016-01&rft.volume=30&rft.issue=6&rft.spage=873&rft.epage=885&rft.pages=873-885&rft.issn=0885-3282&rft.eissn=1530-8022&rft_id=info:doi/10.1177/0885328215604069&rft_dat=%3Cproquest_cross%3E1762365433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760891443&rft_id=info:pmid/26341661&rft_sage_id=10.1177_0885328215604069&rfr_iscdi=true