Loading…
A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair
The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chi...
Saved in:
Published in: | Journal of biomaterials applications 2016-01, Vol.30 (6), p.873-885 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83 |
---|---|
cites | cdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83 |
container_end_page | 885 |
container_issue | 6 |
container_start_page | 873 |
container_title | Journal of biomaterials applications |
container_volume | 30 |
creator | Ainola, Mari Tomaszewski, Waclaw Ostrowska, Barbara Wesolowska, Ewa Wagner, H Daniel Swieszkowski, Wojciech Sillat, Tarvo Peltola, Emilia Konttinen, Yrjö T |
description | The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration. |
doi_str_mv | 10.1177/0885328215604069 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786206374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0885328215604069</sage_id><sourcerecordid>1762365433</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</originalsourceid><addsrcrecordid>eNqNkT1PwzAQhi0EoqWwM6GMLIGznTjOWFV8SZVYgDWynUvrKomLnSD135OohQEJqdMN97yPdPcSck3hjtIsuwcpU84ko6mABER-QqY05RBLYOyUTMd1PO4n5CKEDQCkeSLOyYQJnlAh6JR8zCNtnTKd_cJovdPellG39ohxaRtsg3WtqqPOhtBjjO3KtojetqvIuDZ0vjddVDkfGeU7W6sVRh63yvpLclapOuDVYc7I--PD2-I5Xr4-vSzmy9gkknVxyjPIS22UKoGBlhVHEMxkoqoUK6XQlS5L1AohpxlyaYYDGBe5krnmiJLPyO3eu_Xus8fQFY0NButatej6UNBMCgaCZ8kRqBjUacL5MSjInCbJiMIeNd6F4LEqtt42yu8KCsXYUfG3oyFyc7D3usHyN_BTygDEeyAMDy02rvdDB-F_4TfoEJl0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1760891443</pqid></control><display><type>article</type><title>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</title><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024: Reading List</source><creator>Ainola, Mari ; Tomaszewski, Waclaw ; Ostrowska, Barbara ; Wesolowska, Ewa ; Wagner, H Daniel ; Swieszkowski, Wojciech ; Sillat, Tarvo ; Peltola, Emilia ; Konttinen, Yrjö T</creator><creatorcontrib>Ainola, Mari ; Tomaszewski, Waclaw ; Ostrowska, Barbara ; Wesolowska, Ewa ; Wagner, H Daniel ; Swieszkowski, Wojciech ; Sillat, Tarvo ; Peltola, Emilia ; Konttinen, Yrjö T</creatorcontrib><description>The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.</description><identifier>ISSN: 0885-3282</identifier><identifier>EISSN: 1530-8022</identifier><identifier>DOI: 10.1177/0885328215604069</identifier><identifier>PMID: 26341661</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Biodegradability ; Cartilage ; Cartilage, Articular - cytology ; Cartilage, Articular - growth & development ; Cell Aggregation - physiology ; Cell Differentiation - physiology ; Cell Line ; Chitosan ; Chondrocytes - cytology ; Chondrocytes - physiology ; Chondrogenesis - physiology ; Construction ; Equipment Design ; Equipment Failure Analysis ; Guided Tissue Regeneration - instrumentation ; Humans ; Materials Testing ; Mesenchymal Stromal Cells - cytology ; Mesenchymal Stromal Cells - physiology ; Nanofibers - chemistry ; Nanostructure ; Polyesters - chemistry ; Polyethylene oxides ; Printing, Three-Dimensional ; Stem cells ; Tissue engineering ; Tissue Engineering - instrumentation ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Journal of biomaterials applications, 2016-01, Vol.30 (6), p.873-885</ispartof><rights>The Author(s) 2015</rights><rights>The Author(s) 2015.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</citedby><cites>FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26341661$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ainola, Mari</creatorcontrib><creatorcontrib>Tomaszewski, Waclaw</creatorcontrib><creatorcontrib>Ostrowska, Barbara</creatorcontrib><creatorcontrib>Wesolowska, Ewa</creatorcontrib><creatorcontrib>Wagner, H Daniel</creatorcontrib><creatorcontrib>Swieszkowski, Wojciech</creatorcontrib><creatorcontrib>Sillat, Tarvo</creatorcontrib><creatorcontrib>Peltola, Emilia</creatorcontrib><creatorcontrib>Konttinen, Yrjö T</creatorcontrib><title>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</title><title>Journal of biomaterials applications</title><addtitle>J Biomater Appl</addtitle><description>The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.</description><subject>Biodegradability</subject><subject>Cartilage</subject><subject>Cartilage, Articular - cytology</subject><subject>Cartilage, Articular - growth & development</subject><subject>Cell Aggregation - physiology</subject><subject>Cell Differentiation - physiology</subject><subject>Cell Line</subject><subject>Chitosan</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - physiology</subject><subject>Chondrogenesis - physiology</subject><subject>Construction</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Guided Tissue Regeneration - instrumentation</subject><subject>Humans</subject><subject>Materials Testing</subject><subject>Mesenchymal Stromal Cells - cytology</subject><subject>Mesenchymal Stromal Cells - physiology</subject><subject>Nanofibers - chemistry</subject><subject>Nanostructure</subject><subject>Polyesters - chemistry</subject><subject>Polyethylene oxides</subject><subject>Printing, Three-Dimensional</subject><subject>Stem cells</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - instrumentation</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>0885-3282</issn><issn>1530-8022</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkT1PwzAQhi0EoqWwM6GMLIGznTjOWFV8SZVYgDWynUvrKomLnSD135OohQEJqdMN97yPdPcSck3hjtIsuwcpU84ko6mABER-QqY05RBLYOyUTMd1PO4n5CKEDQCkeSLOyYQJnlAh6JR8zCNtnTKd_cJovdPellG39ohxaRtsg3WtqqPOhtBjjO3KtojetqvIuDZ0vjddVDkfGeU7W6sVRh63yvpLclapOuDVYc7I--PD2-I5Xr4-vSzmy9gkknVxyjPIS22UKoGBlhVHEMxkoqoUK6XQlS5L1AohpxlyaYYDGBe5krnmiJLPyO3eu_Xus8fQFY0NButatej6UNBMCgaCZ8kRqBjUacL5MSjInCbJiMIeNd6F4LEqtt42yu8KCsXYUfG3oyFyc7D3usHyN_BTygDEeyAMDy02rvdDB-F_4TfoEJl0</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Ainola, Mari</creator><creator>Tomaszewski, Waclaw</creator><creator>Ostrowska, Barbara</creator><creator>Wesolowska, Ewa</creator><creator>Wagner, H Daniel</creator><creator>Swieszkowski, Wojciech</creator><creator>Sillat, Tarvo</creator><creator>Peltola, Emilia</creator><creator>Konttinen, Yrjö T</creator><general>SAGE Publications</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>F28</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</title><author>Ainola, Mari ; Tomaszewski, Waclaw ; Ostrowska, Barbara ; Wesolowska, Ewa ; Wagner, H Daniel ; Swieszkowski, Wojciech ; Sillat, Tarvo ; Peltola, Emilia ; Konttinen, Yrjö T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biodegradability</topic><topic>Cartilage</topic><topic>Cartilage, Articular - cytology</topic><topic>Cartilage, Articular - growth & development</topic><topic>Cell Aggregation - physiology</topic><topic>Cell Differentiation - physiology</topic><topic>Cell Line</topic><topic>Chitosan</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - physiology</topic><topic>Chondrogenesis - physiology</topic><topic>Construction</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Guided Tissue Regeneration - instrumentation</topic><topic>Humans</topic><topic>Materials Testing</topic><topic>Mesenchymal Stromal Cells - cytology</topic><topic>Mesenchymal Stromal Cells - physiology</topic><topic>Nanofibers - chemistry</topic><topic>Nanostructure</topic><topic>Polyesters - chemistry</topic><topic>Polyethylene oxides</topic><topic>Printing, Three-Dimensional</topic><topic>Stem cells</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - instrumentation</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ainola, Mari</creatorcontrib><creatorcontrib>Tomaszewski, Waclaw</creatorcontrib><creatorcontrib>Ostrowska, Barbara</creatorcontrib><creatorcontrib>Wesolowska, Ewa</creatorcontrib><creatorcontrib>Wagner, H Daniel</creatorcontrib><creatorcontrib>Swieszkowski, Wojciech</creatorcontrib><creatorcontrib>Sillat, Tarvo</creatorcontrib><creatorcontrib>Peltola, Emilia</creatorcontrib><creatorcontrib>Konttinen, Yrjö T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of biomaterials applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ainola, Mari</au><au>Tomaszewski, Waclaw</au><au>Ostrowska, Barbara</au><au>Wesolowska, Ewa</au><au>Wagner, H Daniel</au><au>Swieszkowski, Wojciech</au><au>Sillat, Tarvo</au><au>Peltola, Emilia</au><au>Konttinen, Yrjö T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair</atitle><jtitle>Journal of biomaterials applications</jtitle><addtitle>J Biomater Appl</addtitle><date>2016-01</date><risdate>2016</risdate><volume>30</volume><issue>6</issue><spage>873</spage><epage>885</epage><pages>873-885</pages><issn>0885-3282</issn><eissn>1530-8022</eissn><abstract>The aim was to develop a hybrid three-dimensional-tissue engineering construct for chondrogenesis. The hypothesis was that they support chondrogenesis. A biodegradable, highly porous polycaprolactone-grate was produced by solid freeform fabrication. The polycaprolactone support was coated with a chitosan/polyethylene oxide nanofibre sheet produced by electrospinning. Transforming growth factor-β3-induced chondrogenesis was followed using the following markers: sex determining region Y/-box 9, runt-related transcription factor 2 and collagen II and X in quantitative real-time polymerase chain reaction, histology and immunostaining. A polycaprolactone-grate and an optimized chitosan/polyethylene oxide nanofibre sheet supported cellular aggregation, chondrogenesis and matrix formation. In tissue engineering constructs, the sheets were seeded first with mesenchymal stem cells and then piled up according to the lasagne principle. The advantages of such a construct are (1) the cells do not need to migrate to the tissue engineering construct and therefore pore size and interconnectivity problems are omitted and (2) the cell-tight nanofibre sheet and collagen-fibre network mimic a cell culture platform for mesenchymal stem cells/chondrocytes (preventing escape) and hinders in-growth of fibroblasts and fibrous scarring (preventing capture). This allows time for the slowly progressing, multiphase true cartilage regeneration.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>26341661</pmid><doi>10.1177/0885328215604069</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-3282 |
ispartof | Journal of biomaterials applications, 2016-01, Vol.30 (6), p.873-885 |
issn | 0885-3282 1530-8022 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786206374 |
source | SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024: Reading List |
subjects | Biodegradability Cartilage Cartilage, Articular - cytology Cartilage, Articular - growth & development Cell Aggregation - physiology Cell Differentiation - physiology Cell Line Chitosan Chondrocytes - cytology Chondrocytes - physiology Chondrogenesis - physiology Construction Equipment Design Equipment Failure Analysis Guided Tissue Regeneration - instrumentation Humans Materials Testing Mesenchymal Stromal Cells - cytology Mesenchymal Stromal Cells - physiology Nanofibers - chemistry Nanostructure Polyesters - chemistry Polyethylene oxides Printing, Three-Dimensional Stem cells Tissue engineering Tissue Engineering - instrumentation Tissue Engineering - methods Tissue Scaffolds |
title | A bioactive hybrid three-dimensional tissue-engineering construct for cartilage repair |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T07%3A19%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20bioactive%20hybrid%20three-dimensional%20tissue-engineering%20construct%20for%20cartilage%20repair&rft.jtitle=Journal%20of%20biomaterials%20applications&rft.au=Ainola,%20Mari&rft.date=2016-01&rft.volume=30&rft.issue=6&rft.spage=873&rft.epage=885&rft.pages=873-885&rft.issn=0885-3282&rft.eissn=1530-8022&rft_id=info:doi/10.1177/0885328215604069&rft_dat=%3Cproquest_cross%3E1762365433%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c482t-53709dbcaad020b8f3e062c76ffa2d86bfbddebae0917e38c0592369a89b3ee83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1760891443&rft_id=info:pmid/26341661&rft_sage_id=10.1177_0885328215604069&rfr_iscdi=true |