Loading…

Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors

We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The temperatures of the two baths can be different, and we allow some constant torque to be applied at each end of the chain. Under some non-degeneracy condition on the interaction potentials, we show tha...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinearity 2015-07, Vol.28 (7), p.2397-2421
Main Authors: Cuneo, N, Eckmann, J-P, Poquet, C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c397t-e2292238eea4ae10990e3bdd544b896d82dce9de406b41880580eb20f6b1dda83
cites cdi_FETCH-LOGICAL-c397t-e2292238eea4ae10990e3bdd544b896d82dce9de406b41880580eb20f6b1dda83
container_end_page 2421
container_issue 7
container_start_page 2397
container_title Nonlinearity
container_volume 28
creator Cuneo, N
Eckmann, J-P
Poquet, C
description We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The temperatures of the two baths can be different, and we allow some constant torque to be applied at each end of the chain. Under some non-degeneracy condition on the interaction potentials, we show that the process admits a unique invariant probability measure, and that it is ergodic with a stretched exponential rate. The interesting issue is to estimate the rate at which the energy of the middle rotor decreases. As it is not directly connected to the heat baths, its energy can only be dissipated through the two outer rotors. But when the middle rotor spins very rapidly, it fails to interact effectively with its neighbours due to the rapid oscillations of the forces. By averaging techniques, we obtain an effective dynamics for the middle rotor, which then enables us to find a Lyapunov function. This and an irreducibility argument give the desired result. We finally illustrate numerically some properties of the non-equilibrium steady state.
doi_str_mv 10.1088/0951-7715/28/7/2397
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786209767</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1786209767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-e2292238eea4ae10990e3bdd544b896d82dce9de406b41880580eb20f6b1dda83</originalsourceid><addsrcrecordid>eNqFkDtPwzAUhS0EEqXwC1i8ILGE-JGHM6KKl1TBAhuS5dg3raskTm1n6L8nUREsSExn-b6rcw9C15TcUSJESqqcJmVJ85SJtEwZr8oTtKC8oEmRZ9kpWvwQ5-gihB0hlArGF-jz1fUJ7Efb2trbscMhgjKHKVQErHqDw1hvwHUQvdUY_MYZq2084MZ5rLDeKttj1-C49QBYu3FowWDvovPhEp01qg1w9Z1L9PH48L56TtZvTy-r-3Wip6IxAcYqxrgAUJkCSqqKAK-NmZrXoiqMYEZDZSAjRZ1RIUguCNSMNEVNjVGCL9Ht8e7g3X6EEGVng4a2VT24MUhaioKRqizKCeVHVHsXgodGDt52yh8kJXLeUs5LyXkpyYQs5bzlZKVHy7pB7tzo--mdf4ybP4ze9b-MHEzDvwDWpYNj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1786209767</pqid></control><display><type>article</type><title>Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Cuneo, N ; Eckmann, J-P ; Poquet, C</creator><creatorcontrib>Cuneo, N ; Eckmann, J-P ; Poquet, C</creatorcontrib><description>We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The temperatures of the two baths can be different, and we allow some constant torque to be applied at each end of the chain. Under some non-degeneracy condition on the interaction potentials, we show that the process admits a unique invariant probability measure, and that it is ergodic with a stretched exponential rate. The interesting issue is to estimate the rate at which the energy of the middle rotor decreases. As it is not directly connected to the heat baths, its energy can only be dissipated through the two outer rotors. But when the middle rotor spins very rapidly, it fails to interact effectively with its neighbours due to the rapid oscillations of the forces. By averaging techniques, we obtain an effective dynamics for the middle rotor, which then enables us to find a Lyapunov function. This and an irreducibility argument give the desired result. We finally illustrate numerically some properties of the non-equilibrium steady state.</description><identifier>ISSN: 0951-7715</identifier><identifier>EISSN: 1361-6544</identifier><identifier>DOI: 10.1088/0951-7715/28/7/2397</identifier><identifier>CODEN: NONLE5</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>chain of rotors ; Chains ; Constants ; convergence to steady state ; Ergodic processes ; Joining ; Lyapunov functions ; non-equilibrium ; Oscillations ; Rotors ; Steady state ; stochastic process</subject><ispartof>Nonlinearity, 2015-07, Vol.28 (7), p.2397-2421</ispartof><rights>2015 IOP Publishing Ltd &amp; London Mathematical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-e2292238eea4ae10990e3bdd544b896d82dce9de406b41880580eb20f6b1dda83</citedby><cites>FETCH-LOGICAL-c397t-e2292238eea4ae10990e3bdd544b896d82dce9de406b41880580eb20f6b1dda83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Cuneo, N</creatorcontrib><creatorcontrib>Eckmann, J-P</creatorcontrib><creatorcontrib>Poquet, C</creatorcontrib><title>Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors</title><title>Nonlinearity</title><addtitle>Non</addtitle><addtitle>Nonlinearity</addtitle><description>We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The temperatures of the two baths can be different, and we allow some constant torque to be applied at each end of the chain. Under some non-degeneracy condition on the interaction potentials, we show that the process admits a unique invariant probability measure, and that it is ergodic with a stretched exponential rate. The interesting issue is to estimate the rate at which the energy of the middle rotor decreases. As it is not directly connected to the heat baths, its energy can only be dissipated through the two outer rotors. But when the middle rotor spins very rapidly, it fails to interact effectively with its neighbours due to the rapid oscillations of the forces. By averaging techniques, we obtain an effective dynamics for the middle rotor, which then enables us to find a Lyapunov function. This and an irreducibility argument give the desired result. We finally illustrate numerically some properties of the non-equilibrium steady state.</description><subject>chain of rotors</subject><subject>Chains</subject><subject>Constants</subject><subject>convergence to steady state</subject><subject>Ergodic processes</subject><subject>Joining</subject><subject>Lyapunov functions</subject><subject>non-equilibrium</subject><subject>Oscillations</subject><subject>Rotors</subject><subject>Steady state</subject><subject>stochastic process</subject><issn>0951-7715</issn><issn>1361-6544</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkDtPwzAUhS0EEqXwC1i8ILGE-JGHM6KKl1TBAhuS5dg3raskTm1n6L8nUREsSExn-b6rcw9C15TcUSJESqqcJmVJ85SJtEwZr8oTtKC8oEmRZ9kpWvwQ5-gihB0hlArGF-jz1fUJ7Efb2trbscMhgjKHKVQErHqDw1hvwHUQvdUY_MYZq2084MZ5rLDeKttj1-C49QBYu3FowWDvovPhEp01qg1w9Z1L9PH48L56TtZvTy-r-3Wip6IxAcYqxrgAUJkCSqqKAK-NmZrXoiqMYEZDZSAjRZ1RIUguCNSMNEVNjVGCL9Ht8e7g3X6EEGVng4a2VT24MUhaioKRqizKCeVHVHsXgodGDt52yh8kJXLeUs5LyXkpyYQs5bzlZKVHy7pB7tzo--mdf4ybP4ze9b-MHEzDvwDWpYNj</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Cuneo, N</creator><creator>Eckmann, J-P</creator><creator>Poquet, C</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150701</creationdate><title>Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors</title><author>Cuneo, N ; Eckmann, J-P ; Poquet, C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-e2292238eea4ae10990e3bdd544b896d82dce9de406b41880580eb20f6b1dda83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>chain of rotors</topic><topic>Chains</topic><topic>Constants</topic><topic>convergence to steady state</topic><topic>Ergodic processes</topic><topic>Joining</topic><topic>Lyapunov functions</topic><topic>non-equilibrium</topic><topic>Oscillations</topic><topic>Rotors</topic><topic>Steady state</topic><topic>stochastic process</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cuneo, N</creatorcontrib><creatorcontrib>Eckmann, J-P</creatorcontrib><creatorcontrib>Poquet, C</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinearity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cuneo, N</au><au>Eckmann, J-P</au><au>Poquet, C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors</atitle><jtitle>Nonlinearity</jtitle><stitle>Non</stitle><addtitle>Nonlinearity</addtitle><date>2015-07-01</date><risdate>2015</risdate><volume>28</volume><issue>7</issue><spage>2397</spage><epage>2421</epage><pages>2397-2421</pages><issn>0951-7715</issn><eissn>1361-6544</eissn><coden>NONLE5</coden><abstract>We consider a chain of three rotors (rotators) whose ends are coupled to stochastic heat baths. The temperatures of the two baths can be different, and we allow some constant torque to be applied at each end of the chain. Under some non-degeneracy condition on the interaction potentials, we show that the process admits a unique invariant probability measure, and that it is ergodic with a stretched exponential rate. The interesting issue is to estimate the rate at which the energy of the middle rotor decreases. As it is not directly connected to the heat baths, its energy can only be dissipated through the two outer rotors. But when the middle rotor spins very rapidly, it fails to interact effectively with its neighbours due to the rapid oscillations of the forces. By averaging techniques, we obtain an effective dynamics for the middle rotor, which then enables us to find a Lyapunov function. This and an irreducibility argument give the desired result. We finally illustrate numerically some properties of the non-equilibrium steady state.</abstract><pub>IOP Publishing</pub><doi>10.1088/0951-7715/28/7/2397</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0951-7715
ispartof Nonlinearity, 2015-07, Vol.28 (7), p.2397-2421
issn 0951-7715
1361-6544
language eng
recordid cdi_proquest_miscellaneous_1786209767
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects chain of rotors
Chains
Constants
convergence to steady state
Ergodic processes
Joining
Lyapunov functions
non-equilibrium
Oscillations
Rotors
Steady state
stochastic process
title Non-equilibrium steady state and subgeometric ergodicity for a chain of three coupled rotors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A55%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-equilibrium%20steady%20state%20and%20subgeometric%20ergodicity%20for%20a%20chain%20of%20three%20coupled%20rotors&rft.jtitle=Nonlinearity&rft.au=Cuneo,%20N&rft.date=2015-07-01&rft.volume=28&rft.issue=7&rft.spage=2397&rft.epage=2421&rft.pages=2397-2421&rft.issn=0951-7715&rft.eissn=1361-6544&rft.coden=NONLE5&rft_id=info:doi/10.1088/0951-7715/28/7/2397&rft_dat=%3Cproquest_cross%3E1786209767%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c397t-e2292238eea4ae10990e3bdd544b896d82dce9de406b41880580eb20f6b1dda83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786209767&rft_id=info:pmid/&rfr_iscdi=true