Loading…
An Informative Feature Selection Method Based on Sparse PCA for VHR Scene Classification
Understanding the scenes provided by very high resolution satellite (VHR) imagery has become a critical task. In this letter, we propose a new informative feature selection method for VHR scene classification. First, scale-invariant feature transform and speeded up robust feature operators are used...
Saved in:
Published in: | IEEE geoscience and remote sensing letters 2016-02, Vol.13 (2), p.147-151 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the scenes provided by very high resolution satellite (VHR) imagery has become a critical task. In this letter, we propose a new informative feature selection method for VHR scene classification. First, scale-invariant feature transform and speeded up robust feature operators are used to extract local features from the original VHR images to construct a visual dictionary. A sparse principal component analysis (sPCA) is then adopted to learn a set of informative features from the visual dictionary for each category. Finally, the scenes are represented by sparse informative low-level features. We conducted experiments on the University of California at Merced data set containing 21 different areal scene categories with submeter resolution and the Sydney data set containing seven land-use categories with 0.5-m spatial resolution. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods even without saliency detection. |
---|---|
ISSN: | 1545-598X 1558-0571 |
DOI: | 10.1109/LGRS.2015.2501383 |