Loading…

Role of fragility in the formation of highly stable organic glasses

In situ dielectric spectroscopy has been used to characterize vapor-deposited glasses of methyl-m-toluate (MMT), an organic glass former with low fragility (m = 60). Deposition near 0.84T(g) produces glasses of very high kinetic stability; these materials are comparable in stability to the most stab...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters 2014-07, Vol.113 (4), p.045901-045901, Article 045901
Main Authors: Sepúlveda, A, Tylinski, M, Guiseppi-Elie, A, Richert, R, Ediger, M D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In situ dielectric spectroscopy has been used to characterize vapor-deposited glasses of methyl-m-toluate (MMT), an organic glass former with low fragility (m = 60). Deposition near 0.84T(g) produces glasses of very high kinetic stability; these materials are comparable in stability to the most stable glasses produced from more fragile glass formers. Highly stable glasses of MMT, when annealed above T(g), transform into the supercooled liquid by a heterogeneous mechanism. A constant velocity propagating front is initiated at the free surface and controls the transformation of thin films. The transition to a bulk-dominated transformation process occurs at 5 μm, the largest length scale reported for any glass. Contrary to recent conclusions, we find that physical vapor deposition can form highly stable organic glasses across the entire range of liquid fragilities.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.113.045901