Loading…
"RegionCut" - Interactive multi-label segmentation utilizing cellular automaton
This paper addresses the problem of interactive image segmentation. We propose an extension of the GrowCut framework which follows Cellular Automaton theory and is comparable to a label propagation algorithm. Therefore, user labels are propagated according to Cellular Automaton until convergency. A...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 316 |
container_issue | |
container_start_page | 309 |
container_title | |
container_volume | |
creator | Arndt, O. J. Scheuermann, B. Rosenhahn, B. |
description | This paper addresses the problem of interactive image segmentation. We propose an extension of the GrowCut framework which follows Cellular Automaton theory and is comparable to a label propagation algorithm. Therefore, user labels are propagated according to Cellular Automaton until convergency. A common problem of GrowCut is the time consuming user initialization which requires distributed seeds. Our main contribution focuses on determining such an initialization utilizing GMMs and spherical coordinates. Furthermore we propose a new weight function based on the mean image gradient. According to our evaluation, our extensions result in a simplified user interaction and in better results in terms of accuracy and running time. Our experiments show that our method can compete with state-of-the-art energy minimization frameworks. |
doi_str_mv | 10.1109/WACV.2013.6475034 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_1786218134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6475034</ieee_id><sourcerecordid>1786218134</sourcerecordid><originalsourceid>FETCH-LOGICAL-i208t-bf7ad0c9a8fbe8178401dbb56bf7c7943fd547ae3bef21a99bb9c32fa38464253</originalsourceid><addsrcrecordid>eNpVkMlqwzAURdUJGtJ8QOlGZNWNUo2WtAymQyAQKB2WRnKeg4psp7ZcaL--Lsmmq7e4h8O9D6FrRheMUXv3vszfFpwyscikVlTIEzSz2jCZaaGokvYUTXgmObHCsLN_meDnaMKUokRpSy_RrO8_KKVslGRWTtBm_gy70Db5kOaY4FWToHNlCl-A6yGmQKLzEHEPuxqa5NKI4iGFGH5Cs8MlxDhE12E3pLZ2qW2u0EXlYg-z452i14f7l_yJrDePq3y5JoFTk4ivtNvS0jpTeTBMG0nZ1nuVjUGprRTVVkntQHioOHPWem9LwSsnjByHKjFFtwfvvms_B-hTUYf-r45roB36YlRmnBkm5IjeHNAAAMW-C7XrvovjJ8UvTW5jEA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>1786218134</pqid></control><display><type>conference_proceeding</type><title>"RegionCut" - Interactive multi-label segmentation utilizing cellular automaton</title><source>IEEE Xplore All Conference Series</source><creator>Arndt, O. J. ; Scheuermann, B. ; Rosenhahn, B.</creator><creatorcontrib>Arndt, O. J. ; Scheuermann, B. ; Rosenhahn, B.</creatorcontrib><description>This paper addresses the problem of interactive image segmentation. We propose an extension of the GrowCut framework which follows Cellular Automaton theory and is comparable to a label propagation algorithm. Therefore, user labels are propagated according to Cellular Automaton until convergency. A common problem of GrowCut is the time consuming user initialization which requires distributed seeds. Our main contribution focuses on determining such an initialization utilizing GMMs and spherical coordinates. Furthermore we propose a new weight function based on the mean image gradient. According to our evaluation, our extensions result in a simplified user interaction and in better results in terms of accuracy and running time. Our experiments show that our method can compete with state-of-the-art energy minimization frameworks.</description><identifier>ISSN: 1550-5790</identifier><identifier>ISBN: 9781467350532</identifier><identifier>ISBN: 1467350532</identifier><identifier>EISSN: 2642-9381</identifier><identifier>EISSN: 1550-5790</identifier><identifier>EISBN: 9781467350549</identifier><identifier>EISBN: 1467350524</identifier><identifier>EISBN: 9781467350525</identifier><identifier>EISBN: 1467350540</identifier><identifier>DOI: 10.1109/WACV.2013.6475034</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Algorithms ; Automata ; Cellular automata ; Computer vision ; Consumption ; Equations ; Image color analysis ; Image edge detection ; Image segmentation ; Interactive ; Labels ; Segmentation ; Smoothing methods ; Workshops</subject><ispartof>2013 IEEE Workshop on Applications of Computer Vision (WACV), 2013, p.309-316</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6475034$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,314,780,784,789,790,2058,27924,27925,54555,54920,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6475034$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arndt, O. J.</creatorcontrib><creatorcontrib>Scheuermann, B.</creatorcontrib><creatorcontrib>Rosenhahn, B.</creatorcontrib><title>"RegionCut" - Interactive multi-label segmentation utilizing cellular automaton</title><title>2013 IEEE Workshop on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>This paper addresses the problem of interactive image segmentation. We propose an extension of the GrowCut framework which follows Cellular Automaton theory and is comparable to a label propagation algorithm. Therefore, user labels are propagated according to Cellular Automaton until convergency. A common problem of GrowCut is the time consuming user initialization which requires distributed seeds. Our main contribution focuses on determining such an initialization utilizing GMMs and spherical coordinates. Furthermore we propose a new weight function based on the mean image gradient. According to our evaluation, our extensions result in a simplified user interaction and in better results in terms of accuracy and running time. Our experiments show that our method can compete with state-of-the-art energy minimization frameworks.</description><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Automata</subject><subject>Cellular automata</subject><subject>Computer vision</subject><subject>Consumption</subject><subject>Equations</subject><subject>Image color analysis</subject><subject>Image edge detection</subject><subject>Image segmentation</subject><subject>Interactive</subject><subject>Labels</subject><subject>Segmentation</subject><subject>Smoothing methods</subject><subject>Workshops</subject><issn>1550-5790</issn><issn>2642-9381</issn><issn>1550-5790</issn><isbn>9781467350532</isbn><isbn>1467350532</isbn><isbn>9781467350549</isbn><isbn>1467350524</isbn><isbn>9781467350525</isbn><isbn>1467350540</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2013</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpVkMlqwzAURdUJGtJ8QOlGZNWNUo2WtAymQyAQKB2WRnKeg4psp7ZcaL--Lsmmq7e4h8O9D6FrRheMUXv3vszfFpwyscikVlTIEzSz2jCZaaGokvYUTXgmObHCsLN_meDnaMKUokRpSy_RrO8_KKVslGRWTtBm_gy70Db5kOaY4FWToHNlCl-A6yGmQKLzEHEPuxqa5NKI4iGFGH5Cs8MlxDhE12E3pLZ2qW2u0EXlYg-z452i14f7l_yJrDePq3y5JoFTk4ivtNvS0jpTeTBMG0nZ1nuVjUGprRTVVkntQHioOHPWem9LwSsnjByHKjFFtwfvvms_B-hTUYf-r45roB36YlRmnBkm5IjeHNAAAMW-C7XrvovjJ8UvTW5jEA</recordid><startdate>201301</startdate><enddate>201301</enddate><creator>Arndt, O. J.</creator><creator>Scheuermann, B.</creator><creator>Rosenhahn, B.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201301</creationdate><title>"RegionCut" - Interactive multi-label segmentation utilizing cellular automaton</title><author>Arndt, O. J. ; Scheuermann, B. ; Rosenhahn, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i208t-bf7ad0c9a8fbe8178401dbb56bf7c7943fd547ae3bef21a99bb9c32fa38464253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Automata</topic><topic>Cellular automata</topic><topic>Computer vision</topic><topic>Consumption</topic><topic>Equations</topic><topic>Image color analysis</topic><topic>Image edge detection</topic><topic>Image segmentation</topic><topic>Interactive</topic><topic>Labels</topic><topic>Segmentation</topic><topic>Smoothing methods</topic><topic>Workshops</topic><toplevel>online_resources</toplevel><creatorcontrib>Arndt, O. J.</creatorcontrib><creatorcontrib>Scheuermann, B.</creatorcontrib><creatorcontrib>Rosenhahn, B.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arndt, O. J.</au><au>Scheuermann, B.</au><au>Rosenhahn, B.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>"RegionCut" - Interactive multi-label segmentation utilizing cellular automaton</atitle><btitle>2013 IEEE Workshop on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2013-01</date><risdate>2013</risdate><spage>309</spage><epage>316</epage><pages>309-316</pages><issn>1550-5790</issn><eissn>2642-9381</eissn><eissn>1550-5790</eissn><isbn>9781467350532</isbn><isbn>1467350532</isbn><eisbn>9781467350549</eisbn><eisbn>1467350524</eisbn><eisbn>9781467350525</eisbn><eisbn>1467350540</eisbn><abstract>This paper addresses the problem of interactive image segmentation. We propose an extension of the GrowCut framework which follows Cellular Automaton theory and is comparable to a label propagation algorithm. Therefore, user labels are propagated according to Cellular Automaton until convergency. A common problem of GrowCut is the time consuming user initialization which requires distributed seeds. Our main contribution focuses on determining such an initialization utilizing GMMs and spherical coordinates. Furthermore we propose a new weight function based on the mean image gradient. According to our evaluation, our extensions result in a simplified user interaction and in better results in terms of accuracy and running time. Our experiments show that our method can compete with state-of-the-art energy minimization frameworks.</abstract><pub>IEEE</pub><doi>10.1109/WACV.2013.6475034</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1550-5790 |
ispartof | 2013 IEEE Workshop on Applications of Computer Vision (WACV), 2013, p.309-316 |
issn | 1550-5790 2642-9381 1550-5790 |
language | eng |
recordid | cdi_proquest_miscellaneous_1786218134 |
source | IEEE Xplore All Conference Series |
subjects | Algorithm design and analysis Algorithms Automata Cellular automata Computer vision Consumption Equations Image color analysis Image edge detection Image segmentation Interactive Labels Segmentation Smoothing methods Workshops |
title | "RegionCut" - Interactive multi-label segmentation utilizing cellular automaton |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A25%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=%22RegionCut%22%20-%20Interactive%20multi-label%20segmentation%20utilizing%20cellular%20automaton&rft.btitle=2013%20IEEE%20Workshop%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Arndt,%20O.%20J.&rft.date=2013-01&rft.spage=309&rft.epage=316&rft.pages=309-316&rft.issn=1550-5790&rft.eissn=2642-9381&rft.isbn=9781467350532&rft.isbn_list=1467350532&rft_id=info:doi/10.1109/WACV.2013.6475034&rft.eisbn=9781467350549&rft.eisbn_list=1467350524&rft.eisbn_list=9781467350525&rft.eisbn_list=1467350540&rft_dat=%3Cproquest_CHZPO%3E1786218134%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i208t-bf7ad0c9a8fbe8178401dbb56bf7c7943fd547ae3bef21a99bb9c32fa38464253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1786218134&rft_id=info:pmid/&rft_ieee_id=6475034&rfr_iscdi=true |