Loading…

Automated in situ line of sight calibration of ASDEX Upgrade bolometers

The ITER Bolometer Robot Test Rig (IBOROB) is a robot-based diagnostic tool, which allows the measurement of the lines of sight (LOS) of the ITER bolometer prototypes. Up to now, it was only used as a LOS characterization device for the ITER collimator development. IBOROB was further developed and c...

Full description

Saved in:
Bibliographic Details
Published in:Fusion engineering and design 2014-10, Vol.89 (9-10), p.2262-2267
Main Authors: Penzel, F., Meister, H., Bernert, M., Sehmer, T., Trautmann, T., Kannamüller, M., Koll, J., Koch, A.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The ITER Bolometer Robot Test Rig (IBOROB) is a robot-based diagnostic tool, which allows the measurement of the lines of sight (LOS) of the ITER bolometer prototypes. Up to now, it was only used as a LOS characterization device for the ITER collimator development. IBOROB was further developed and can now be operated in ASDEX Upgrade during a regular maintenance shutdown. At present, once a diagnostic like the bolometry is mounted inside the vessel, the actual LOS orientations are not measured, they are derived from CAD. The new procedure allows the fully automatic three-dimensional in situ measurement of bolometer LOS. The spatial distribution, the poloidal and toroidal alignment in the experiment coordinate system (CS), can be determined. The absolute accuracy, in reference to the tokamak CS, is provided by an additional calibration performed with a measurement arm by FARO Technologies Inc. Therefore, the amount of misalignment from the theoretical expectations can be quantified. In addition specific camera type dependencies such as internal camera reflections can be identified. Due to the high position accuracy of the robot, the LOS can be resolved with a spatial resolution of up to 0.1°. The method is explained in detail and results from two exemplary bolometer foil cameras obtained in a first set-up in ASDEX Upgrade are presented. The different steps and components needed to apply the measurements in the vessel are described with a focus on the constraints, e.g. geometrical, for an application of this method in a tokamak. Finally the consequences of the results are extrapolated to ITER and evaluated.
ISSN:0920-3796
1873-7196
DOI:10.1016/j.fusengdes.2014.03.075